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Quantum Transport
Introduction to Nanoscience

Quantum transport is a diverse field, sometimes combining seemingly contradicting
concepts — quantum and classical, conducting and insulating — within a single nano-device.
Quantum transport is an essential and challenging part of nanoscience, and understanding
its concepts and methods is vital to the successful design of devices at the nano-scale.

This textbook is a comprehensive introduction to the rapidly developing field of quan-
tum transport. The authors present the comprehensive theoretical background, and explore
the groundbreaking experiments that laid the foundations of the field. Ideal for graduate
students, each section contains control questions and exercises to check the reader’s under-
standing of the topics covered. Its broad scope and in-depth analysis of selected topics will
appeal to researchers and professionals working in nanoscience.

Yuli V. Nazarov is a theorist at the Kavli Institute of Nanoscience, Delft University of Tech-
nology. He obtained his Ph.D. from the Landau Institute for Theoretical Physics in 1985,
and has worked in the field of quantum transport since the late 1980s.

Yaroslav M. Blanter is an Associate Professor in the Kavli Institute of Delft University of
Technology. Previous to this Neuroscience, he was a Humboldt Fellow at the University of
Karlsruhe and a Senior Assistant at the University of Geneva.



Preface

This book provides an introduction to the rapidly developing field of quantum transport.
Quantum transport is an essential and intellectually challenging part of nanoscience; it
comprises a major research and technological effort aimed at the control of matter and
device fabrication at small spatial scales. The book is based on the master course that has
been given by the authors at Delft University of Technology since 2002. Most of the mat-
erial is at master student level (comparable to the first years of graduate studies in the
USA). The book can be used as a textbook: it contains exercises and control questions.
The program of the course, reading schemes, and education-related practical information
can be found at our website www.hbar-transport.org.

We believe that the field is mature enough to have its concepts — the key principles
that are equally important for theorists and for experimentalists — taught. We present at a
comprehensive level a number of experiments that have laid the foundations of the field,
skipping the details of the experimental techniques, however interesting and important
they are. To draw an analogy with a modern course in electromagnetism, it will discuss
the notions of electric and magnetic field rather than the techniques of coil winding and
electric isolation.

We also intended to make the book useful for Ph.D. students and researchers, includ-
ing experts in the field. We can liken the vast and diverse field of quantum transport to a
mountain range with several high peaks, a number of smaller mountains in between, and
many hills filling the space around the mountains. There are currently many good reviews
concentrating on one mountain, a group of hills, or the face of a peak. There are several
books giving a view of a couple of peaks visible from a particular point. With this book, we
attempt to perform an overview of the whole mountain range. This comes at the expense
of detail: our book is not at a monograph level and omits some tough derivations. The level
of detail varies from topic to topic, mostly reflecting our tastes and experiences rather than
the importance of the topic.

We provide a significant number of references to current research literature: more than a
common textbook does. We do not give a representative bibliography of the field. Nor do
the references given indicate scientific precedences, priorities, and relative importance of
the contributions. The presence or absence of certain citations does not necessarily reflect
our views on these precedences and their relative importance.

This book results from a collective effort of thousands of researchers and students
involved in the field of quantum transport, and we are pleased to acknowledge them here.
We are deeply and personally indebted to our Ph.D. supervisors and to distinguished senior
colleagues who introduced us to quantum transport and guided and helped us, and to
comrades-in-research working in universities and research institutions all over the world.
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Preface

This book would never have got underway without fruitful interactions with our students.
Parts of the book were written during our extended stays at Weizmann Institute of Science,
Argonne National Laboratory, Aspen Center of Physics, and Institute of Advanced Studies,
Oslo.

It is inevitable that, despite our efforts, this book contains typos, errors, and less com-
prehensive discourses. We would be happy to have your feedback, which can be submitted
via the website www.hbar-transport.org. We hope that it will be possible thereby to provide
some limited “technical” support.
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Introduction

It is an interesting intellectual game to compress an essence of a science, or a given
scientific field, to a single sentence. For natural sciences in general, this sentence would
probably read: Everything consists of atoms. This idea seems evident to us. We tend to
forget that the idea is rather old: it was put forward in Ancient Greece by Leucippus and
Democritus, and developed by Epicurus, more than 2000 years ago. For most of this time,
the idea remained a theoretical suggestion. It was experimentally confirmed and established
as a common point of view only about 150 years ago.

Those 150 years of research in atoms have recently brought about the field of
nanoscience, aiming at establishing control and making useful things at the atomic scale.
It represents the common effort of researchers with backgrounds in physics, chemistry,
biology, material science, and engineering, and contains a significant technological com-
ponent. It is technology that allows us to work at small spatial scales. The ultimate goal of
nanoscience is to find means to build up useful artificial devices — nanostructures — atom by
atom. The benefits and great prospects of this goal would be obvious even to Democritus
and Epicurus.

This book is devoted to quantum transport, which is a distinct field of science. It is
also a part of nanoscience. However, it is a very unusual part. If we try to play the same
game of putting the essence of quantum transport into one sentence, it would read: /1 is not
important whether a nanostructure consists of atoms. The research in quantum transport
focuses on the properties and behavior regimes of nanostructures, which do not immedi-
ately depend on the material and atomic composition of the structure, and which cannot
be explained starting by classical (that is, non-quantum) physics. Most importantly, it has
been experimentally demonstrated that these features do not even have to depend on the
size of the nanostructure. For instance, the transport properties of quantum dots made of
a handful of atoms may be almost identical to those of micrometer-size semiconductor
devices that encompass billions of atoms.

The two most important scales of quantum transport are conductance and energy scale.
The measure of conductance, G, is the conductance quantum Gg = e? /m h, the scale made
of fundamental constants: electron charge e (most of quantum transport is the transport of
electrons) and the Planck constant / (this indicates the role of quantum mechanics). The
energy scale is determined by flexible experimental conditions: by the temperature, kg7,
and/or the bias voltage applied to a nanostructure, eV . The behavior regime is determined
by the relation of this scale to internal energy scales of the nanostructure. Whereas physical
principles, as stressed, do not depend on the size of the nanostructure, the internal scales
do. In general, they are bigger for smaller nanostructures.
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This implies that the important effects of quantum transport, which could have been seen
at room temperature in atomic-scale devices, would require helium temperatures (4.2 K),
or even sub-kelvin temperatures, to be seen in devices of micrometer scale. This is not
a real problem, but rather a minor inconvenience both for research and potential appli-
cations. Refrigeration techniques are currently widely available. One can achieve kelvin
temperatures in a desktop installation that is comparable in price to a computer. The cost
of creating even lower temperatures can be paid off using innovative applications, such as
quantum computers (see Chapter 5).

Research in quantum transport relies on the nanostructures fabricated using nanotech-
nologies. These nanostuctures can be of atomic scale, but also can be significantly bigger
due to the aforementioned scale independence. The study of bigger devices that are rel-
atively easy to fabricate and control helps to understand the quantum effects and their
possible utilization before actually going to atomic scale. This is why quantum transport
tells what can be achieved if the ultimate goal of nanoscience — shaping the world atom by
atom — is realized. This is why quantum transport presents an indispensable “/ntroduction
to nanoscience.”

Historically, quantum transport inherits much from a field that emerged in the early
1980s known as mesoscopic physics. The main focus of this field was on quantum sig-
natures in semiclassical transport (see, e.g., Refs. [1] and [2], and Chapter 4). The name
mesoscopic came about to emphasize the importance of intermediate (meso) spatial scales
that lie between micro-(atomic) and macroscales. The idea was that quantum mechan-
ics reigns at microscales, whereas classical science does so at macroscale. The mesoscale
would be a separate kingdom governed by separate laws that are neither purely quantum
nor purely classical; rather, a synthesis of the two. The mesoscopic physics depends on
the effective dimensionality of the system; the results in one, two, and three dimensions
are different. The effective dimensionality may change upon changing the energy scale. In
these terms, quantum transport mostly concentrates on a zero-dimensional situation where
the whole nanostructure is regarded as a single object characterized by a handful of param-
eters; the geometry is not essential. Mesoscopics used to be a very popular term in the
1990s and used to be the name of the field reviewed in this book. However, intensive
experimental activity in the late 1980s and 1990s did not reveal any sharp border between
meso- and microscales. For instance, metallic contacts consisting of one or a few atoms
were shown to exhibit the same transport properties and regimes as micron-scale contacts
in semiconductor heterostructures. This is why the field is called now quantum transport,
while the term mesoscopic is now most commonly used to refer to a cross-over regime
between quantum and classical transport.

The objects, regimes, and phenomena of quantum transport are various and may seem
unlinked. The book comprises six chapters that are devoted to essentially different physical
situations. Before moving on to the main part of the book, let us present an overview of
the whole field (see the two-dimensional map, Fig. 1). For the sake of presentation, this
map is rather Procrustean: we had to squeeze and stretch things to fit them on the figure.
For instance, it does not give important distinctions between normal and superconducting
systems. Still, it suffices for the overview.
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m Map of quantum transport. Various important regimes are given here in a log-log plot. The
numbered diamonds show the locations of some experiments described in the book (see the end

of this Introduction for a list).

The axes represent the conductance of a nanostructure and the energy scale at which the
nanostructure is operated; i.e. that set by temperature and/or voltage. This is a log—log plot,
and allows us to present in the same plot scales that differ by several orders of magnitude.
There is a single universal measure for the conductance — the conductance quantum G .
If G > Gq, the electron conductance is easy: many electrons traverse a nanostructure
simultaneously and they can do this in many ways, known as transport channels. For G <«
G . the transport takes place in rare discrete events: electrons tunnel one-by-one. The
regions around the cross-over line G >~ G, attract the most experimental interest and are
usually difficult to comprehend theoretically.

There are several internal energy scales characterizing the nanostructure. To understand
them, let us consider an example nanostructure that is of the same (by order of magnitude)
size in all three dimensions and is connected to two leads that are much bigger than the
nanostructure proper. If we isolated the nanostructure from the leads, the electron energies
become discrete, as we know from quantum mechanics. Precise positions of the energy lev-
els would depend on the details of the nanostructure. The energy measure of such quantum
discreteness is the mean level spacing 8s — a typical energy distance between the adjacent



Introduction

levels. Another energy scale comes about from the fact that electrons are charged particles
carrying an elementary change e. It costs finite energy — the charging energy Ec — to add
an extra electron to the nanostructure. This charging energy characterizes the interactions
of electrons. At atomic scale, s >~ 1 eV and Ec >~ 10eV. These internal scales are smaller
for bigger structures, and Ec is typically much bigger than ds.

As seen in Fig. 1, these scales separate different regimes at low conductance G < Gq.
At high conductance, G > G, the electrons do not stay in the nanostructure long enough
to feel Ec or §s. New scales emerge. The time the electron spends in the nanostruc-
ture gives rise to an energy scale: the Thouless energy, ETn. This is due to the quantum
uncertainty principle, which relates any time scale to any energy scale by (AE)(At) ~ h.
The Thouless energy is proportional to the conductance of the nanostructure, Ey =~
3sG/Gq, and this is why the corresponding line in the figure is at an angle in the log—log
plot.

Another slanted line in the upper part of Fig. | is due to the electron—electron inter-
action, which works destructively. It provides intensive energy relaxation of the electron
distribution in a nanostructure and/or limits the quantum-mechanical coherence. On the
right of the line, the quantum effects in transport disappear: we are dealing with classi-
cal incoherent transport. At the line, the inelastic time, 7;,, equals the time the electron
spends in the nanostructure, that is, h/t, >~ ETh. The corresponding energy scale can
be estimated as >~ st(G/GQ)2 > ETh. In the context of mesoscopics, Thouless has sug-
gested that extended conductors are best understood by subdividing a big conductor into
smaller nanostructures. The size of such nanostructure is chosen to satisfy the condition
h/tin >~ ETn. This is why all experiments where mesoscopic effects are addressed are
actually located in the vicinity of the line; we call it the mesoscopic border.

Once we have drawn the borders, we position the material contained in each chapters
on the map. Chapter | is devoted to the scattering approach to electron transport. It is an
important concept of the field that at sufficiently low energies any nanostructure can be
regarded as a (huge) scatterer for electron waves coming from the leads. At G > G, the
validity of the scattering approach extends to the mesoscopic border. At energies exceeding
the Thouless energy, the energy dependence of the scattering matrix becomes important.
In Chapter 1, we explain how the scattering approach works in various circumstances,
including a discussion of superconductors and time-dependent and spin-dependent phe-
nomena. We relate the transport properties to the set of transmission eigenvalues of a
nanostructure — its “pin-code.” The basics explained in Chapter | relate, in one way or
another, to all chapters.

If we move up along the conductance axis, G > Gq, the scattering theory becomes pro-
gressively impractical owing to a large number of transport channels resulting in a bigger
scattering matrix. Fortunately, there is an alternative way to comprehend this semi-classical
coherent regime outlined in Chapter 2. We show that the properties of nanostructures are
determined by self-averaging over the quantum phases of the scattering matrix elements.
Because of this, the laws governing this regime, being essentially quantum, are similar to
the laws of transport in classical electric circuits. We explain the machinery necessary to
apply these laws — quantum circuit theory. The quantum effects are frequently concealed
in this regime; for instance, the conductance is given by the classical Ohm’s law. Their
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manifestations are most remarkable in superconductivity, the statistics of electron trans-
fers, and spin transport. Remarkably, there is no limitation to quantum mechanics at high
conductances as soon as one remains above the mesoscopic border.

Chapter 3 brings us to the lower part of the map — to conductances much lower than G,.
There, the charging energy scale Ec becomes relevant, manifesting a strong interaction
between the electrons (the Coulomb blockade). This is why we concentrate on the energies
of the order of E¢, disregarding the mean level spacing 8s. Transport in this single-electron
tunneling regime proceeds via incoherent transfer of single electrons. However, the trans-
fers are strongly correlated and can be precisely controlled — one can manipulate electrons
one-by-one. The quantum correction to single-electron transport is co-tunneling, i.e. coop-
erative tunneling of two electrons. The energy scale /Ecds separates inelastic and elastic
co-tunneling. In the elastic co-tunneling regime, the nanostructure can be regarded as a
scatterer in accordance with the general principles outlined in Chapter 1. The combina-
tion of the Coulomb blockade and superconductivity restores the quantum coherence of
elementary electron transfers and provides the opportunity to build quantum devices of
almost macroscopic size.

The material discussed in Chapter 4 is spread over several areas of the map. In this
chapter, we address the statistics of persistent fluctuations of transport properties. We start
with the statistics of discrete electron levels — this is the domain of low conductances,
G <« G, and low energies, of the order of the mean level spacing. Then we go to the
different corner, to G > G and the energies on the left from the mesoscopic border,
to discuss fluctuations of transmission eigenvalues — the universal conductance fluctua-
tions (UCF) — and the interference correction to transport, weak localization. The closing
section of Chapter 4 is devoted to strong localization in disordered media, where elec-
tron hopping is the dominant mechanism of conduction. This implies G <« G and high
energies.

A fascinating development of the field is the use of nanostructures for quantum infor-
mation purposes. Here, we do not need a flow of quantum electrons, but rather a flow of
quantum information. Chapter 5 presents qubits and quantum dots, perhaps the most pop-
ular devices of quantum transport. For both devices, the discrete nature of energy levels is
essential. This is why they occupy the energy area left of the level spacing §s on the map.
We also present in Chapter 5 a comprehensive introduction to quantum information and
manipulation.

In Chapter 6 we discuss interaction effects that do not fit into the simple framework of the
Coulomb blockade. Such phenomena are found in various areas of the map. We start this
chapter with a discussion of the underlying theory, called dissipative quantum mechanics.
We study the effects of an electromagnetic environment on electron tunneling, remaining
in the area of the Coulomb blockade. We go up in conductance to understand the fate of the
Coulomb blockade at G 2 Gq and the role of interaction effects at higher conductances.
The electrons in the leads provide a specific (fermionic) environment responsible for the
Kondo effect in quantum dots. The Kondo energy scale depends exponentially on the con-
ductance and is given by the curve on the left side of the map. Finally, we discuss energ
dissipation and dephasing separately for qubits and electrons. In the latter case, we are at
the mesoscopic border.
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At high energies one leaves the field of quantum transport: transport proceeds as
commonly taught in courses of solid-state physics.

We have not yet mentioned the numbered diamonds in the map. These denote the
location of several experiments presented in various chapters of the book.

(1) Discovery of conductance quantization (Section 1.2);

(2) interference nature of the weak localization (Section 1.6);
(3) universal conductance fluctuations (Section 1.6);

(4) single-electron transistor (Section 3.2);

(5) discrete states in quantum dots (Section 5.4);

(6) early qubit (Section 5.5);

(7) Kondo effect in quantum dots (Section 6.6);

(8) energy relaxation in diffusive wires (Section 6.8).



1.1 Wave properties of electrons

Quantum mechanics teaches us that each and every particle also exists as a wave. Wave
properties of macroscopic particles, such as brickstones, sand grains, and even DNA
molecules, are hardly noticeable to us; we deal with them at a spatial scale much bigger
than their wavelength. Electrons are remarkable exceptions. Their wavelength is a fraction
of a nanometer in metals and can reach a fraction of a micrometer in semiconductors. We
cannot ignore the wave properties of electrons in nanostructures of this size. This is the cen-
tral issue in quantum transport, and we start the book with a short summary of elementary
results concerning electron waves.

A quantum electron is characterized by its wave function, W(r,t). The squared absolute
value, |W(r,1)|%, gives the probability of finding the electron at a given point r at time .
Quantum states available for an electron in a vacuum are those with a certain wave vector
k. The wave function of this state is a plane wave,

1

Wy (r,1) ﬁexp(lk r—iE(k)/h), (1.1)
E(k) = h2k? /2m being the corresponding energy. The electron in this state is spread over
the whole space of a very big volume V; the squared absolute value of W does not depend
on coordinates. The prefactor in Eq. (1.1) ensures that there is precisely one electron in this
big volume. There are many electrons in nanostructures. Electrons are spin 1/2 fermions,
and the Pauli principle ensures that each one-particle state is either empty or filled with
one fermion. Let us consider a cube in k-space centered around k with the sides dk,, dk,,
dk, < |k|. The number of available states in this cube is 25V dk, dk, dk./(2m )3. The
factor of 23 comes from the fact that there are two possible spin directions. The fraction
of states filled in this cube is called an electron filling factor, f (k). The particle density n,
energy density £, and density of electric current j are contributed to by all electrons and
are given by

n 3 l

d’k
£ :/2\W E(k) | f(k). (1.2)
J a ev(k)

Here we introduce the electron charge ¢ and the velocity v(k) = hk/m. Quantum mechan-
ics puts no restriction on f(k). However, the filling factor of electrons in an equilibrium
state at a given electrochemical potential u and temperature 7 is set by Fermi—Dirac
statistics:
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Electrons as waves. (a) An electron in a vacuum is in the plane wave state with the wave vector k.
(b) The profile of its wave function W. (c) At zero temperature, the electrons fill the states with
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smoothed step-like function of energy.

I
Feal) = fe(EW) = 1) = 1 e ke T) Y

The chemical potential at zero temperature is known as the Fermi energy, EF.

Control question 1.1. What is the limit of fr(F) at T — 07 Hint: see Fig. 1.1.

Next, we consider electrons in the field of electrostatic potential, U(r,t)/e. The
wave function W(r,7) of an electron is no longer a plane wave. Instead, it obeys the

time-dependent Schrédinger equation, given by
L o) - 5 n_,
ih——— = HVY(r,t); H=——V-"4+U(r,1). (1.4)
at 2m

This is an evolutionary equation: it determines W in the future given its instant value. The
evolution operator H is called the Hamiltonian. For the time being, we concentrate on the
stationary potential, U(r,t) = U(r). The wave functions become stationary, with their time
dependence given by the energy

W(r,t) = exp(—iEt/h)Ye(r).

The Schrodinger equation reduces to

5 h?
EYyg(r)= Hyg(r) = [_ﬂvz + U(r)] V). (1.5)
The Hamiltonian becomes the operator of energy, while the equation becomes a linear
algebra relation defining the eigenvalues E and the corresponding eigenfunctions Wy of
this operator. These eigenfunctions form a basis in the Hilbert space of all possible wave
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functions, so that an arbitrary wave function can be expanded, or represented, in this basis.
The first (gradient) term in the Hamiltonian describes the kinetic energy; the second term,
U (r), represents the potential energy.

A substantial part of quantum mechanics deals with the above equation. It cannot be
readily solved for an arbitrary potential, and our qualitative understanding of quantum
mechanics is built upon several simple cases when this solution can be obtained explicitly.
Following many good textbooks, we will concentrate on the one-dimensional motion, in
which the potential and the wave functions depend on a single coordinate x. However, we
pause to introduce a key concept that makes this one-dimensional motion more physical.

1.1.1 Transmission and reflection

Let us confine electrons in a tube — a waveguide — of rectangular cross-section that is
infinitely long in the x direction. We can do this by setting the potential U to zero for
|y| < a/2,|z| < b/2 and to 400 otherwise. We thus create walls that are impenetrable to
the electron and are perpendicular to the y and z axes. We expect a wave to be reflected
from these walls, changing the sign of the corresponding component of the wave vector,
ky — —ky or k; — —k;. This suggests that the solution of the Schrodinger equation is a
superposition of incident and reflected waves of the following kind:

Yi(x,y,z) = exp(ikyx) Z Cs,s. €xp(syikyy) exp(s:ik;z). (1.6)
Sy Sz=+,—

Since the infinite potential repels the electron efficiently, the wave function must van-
ish at the walls, ¥ (x,y = +a/2,z) = ¥(x, y,z = £b/2) = 0. This gives a linear relation
between C; . that determines these superposition coefficients. To put it simply, the walls
have to be in the nodes of a standing wave in both y and z directions. This can only happen
if ky. assume quantized values k|, = mny/a,k? = mn;/b, with integers n,,n. > 0 cor-
responding to the number of half-Wavelenglhs that fit between the walls. The notation we
use throughout the book here we introduce for the compound index n = (n,,n;). The wave
function reads as follows:

Yken(X, ¥, 2) = Y ()@ (y, 2);
Yi, (x) = exp(ikyx); (1.7)

&)
D, (y,2) = ﬁ sin(k} (y — a/2)) sin(k? (z — b/2)).
The transverse motion of the electron is thus quantized. The electron in a state with
the given n (these states are called modes in wave theory and transport channels in
nanophysics) has only one degree of freedom corresponding to one-dimensional motion.
The energy spectrum consists of one-dimensional branches shifted by a channel-dependent
energy E, (see Fig. 1.2), given by

hky ) n2h? (n2  n2
En(k,\’):( o +En; Ey = <—:+; . (1.8)

2m 2m a- b?



