volutionary




Evolutionary Game Theory

Jorgen W, Weibull

The MIT Press
Cambridge, Massachusetts
London, England



Second printing, 1996
© 1995 Massachusetts Institute of Technology

All rights reserved. No part of this publication may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Times Roman by Windfall Software using ZzTgX and was printed and bound
in the United States of America.

Library of Congress Cataloging-in-Publication Data

Weibull, Jorgen W., 1948—
Evolutionary game theory / Jorgen W. Weibull.
p. cm.
Includes bibliographical references and index.
ISBN 0-262-23181-6 (alk. paper)
1. Game theory. 2. Evolution-Mathematical models. I. Title
QA269.W45 1995
519.3-dc20
94-44425
CIP



for Sofia and Anna



Foreword

Ken Binmore

When von Neumann and Morgenstern’s Theory of Games and Economic Be-
havior appeared in 1944, it was greeted with great enthusiasm. it was thought
that a complete theory of strategic behavior had sprung into existence from
nowhere, as Athena burst fully armed from the forehead of Zeus. However,
it soon became apparent that von Neumann and Morgenstern had provided
only the beginnings of a theory, and those seeking quick applications became
disillusioned. Game theory then spent a long period in the doldrums. The
mathematics of the theory of two-person, zero-sum games continued to be
studied. Much effort was also devoted to developing cooperative game theory.
But the problems of noncooperative game theory in general were left largely
untouched.

Von Neumann and Morgenstern being no more, the Nobel Prize for Eco-
nomics was recently awarded to three game theorists, John Nash, John
Harsanyi, and Reinhard Selten. Nash’s work was published in the early 1950s,
but it was not until the early 1970s that it was fully realized what a powerful
tool Nash had provided in formulating the equilibrium concept that bears his
name. Game theory then enjoyed a renaissance as economists applied the idea
to a wide range of problems. However, a fly in the ointment was awaiting dis-
covery. Games typically have many Nash equilibria. In two-person, zero-sum
games, this creates no problem because all equilibria are then interchangeable
and payoff-equivalent. But the equilibrium selection problem for more general
games has no such easy solution.

At first it was thought that the problem could be tackled by refining the
Nash equilibrium concept. Despite Nash’s remarks in his thesis about a pos-
sible evolutionary interpretation of the idea of a Nash equilibrium, attention
at that time was focused almost entirely on its interpretation as the only vi-
able outcome of careful reasoning by ideally rational players. Various bells
and whistles were therefore appended to the definition of rationality. These al-
lowed some Nash equilibria to be discarded as inadequately rational according
to whatever new definition of rationality was being proposed. However, differ-
ent game theorists proposed so many different rationality definitions that the
available set of refinements of Nash equilibrium became embarrassingly large.
Eventually, almost any Nash equilibrium could be justified in terms of some-
one or other’s refinement. As a consequence a new period of disillusionment
with game theory seemed inevitable by the late 1980s.
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Fortunately the 1980s saw a new development. Maynard Smith’s book Evo-
lution and the Theory of Games directed game theorists’ attention away from
their increasingly elaborate definitions of rationality. After all, insects can
hardly be said to think at all, and so rationality cannot be so crucial if game
theory somehow manages to predict their behavior under appropriate condi-
tions. Simultaneously the advent of experimental economics brought home the
fact that human subjects are no great shakes at thinking either. When they find
their way to an equilibrium of a game, they typically do so using trial-and-
error methods.

As the appearance of this book indicates, the 1990s have therefore seen
a turning away from attempts to model people as hyperrational players. The
new approach to the equilibrium selection problem emphasizes the almost
tautological assertion that the equilibrium selected will be a function of the
equilibriating process by means of which it is achieved. The process may be
slow, as in biological evolution. It may be fast, as in social evolution, when
the mechanism for the transmission of superior strategies from one head to
another is imitation. It may be almost instantaneous, as when the price adjusts
to equate supply and demand in the Chicago wheat market. However, we have
learned that all these different processes have features in common that make it
worthwhile considering evolutionary processes in the abstract.

Such studies teach us some painful lessons. We learn that there is nearly
always evolutionary pressure against the various types of behavior labeled as
“irrational” in the refinements’ literature, but these pressures can vary enor-
mously in their relative strengths. If the pressure against one type of irra-
tionality is weak, the pressures against other types of irrationality may rush
the system to an equilibrium before the pressure against the first type of irra-
tionality has a chance to have much effect. For example, weakly dominated
strategies need not be eliminated. Even strongly dominated strategies can sur-
vive in certain special cases.

We also learn that historical and institutional factors cannot be ignored. This
is not a hard lesson for biologists, for whom the realities of genetic inheritance
and the accidents of geography are brute facts that cannot be overlooked. But
economists remain resistant to the idea that the same game might receive a
different analysis if the players have a different history of experience, or live
in different societies, or operate in different industries. One sometimes even
reads that theories that ignore such considerations are “superior” to those that
do because they are able to generate predictions with less data! However,
if there is one fact that work on evolutionary games has established beyond
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doubt, it is that some details of the equilibriating process can have a major
impact on the equilibrium selected. One of the major tasks awaiting us is to
identify such significant details so that applied workers know what to look for
in the environments within which the games they care about are played.

However, such a program is for the future. J6rgen Weibull’s book is a com-
pendium of progress so far in the area in which biology and economics over-
lap. Much of the material is his own work and that of his collaborators. It is
distinguished by the clarity of the exposition and the elegance of the mathe-
matics. He does not pretend to cover the whole field. One must look elsewhere
for the nitty-gritty of population genetics or the properties of evolutionary pro-
cesses with a strong stochastic component. But within his chosen area, his
coverage is satisfyingly comprehensive.

Evolutionary game theory is here to stay, and I suspect this book will be a
staple of its literature for many years to come. Its author is to be congratulated
on having done such a fine job.



Introduction

The standard interpretation of noncooperative game theory is that the ana-
lyzed game is played exactly once by fully rational players who know all the
details of the game, including each other’s preferences over outcomes. Evolu-
tionary game theory, instead, imagines that the game is played over and over
again by biologically or socially conditioned players who are randomly drawn
from large populations.! More specifically, each player is “pre-programmed”
to some behavior—formally a strategy in the game—and one assumes that
some evolutionary selection process operates over time on the population dis-
tribution of behaviors. What, if any, are the connections between the long-
run aggregate behavior in such an evolutionary process and solution concepts
in noncooperative game theory? More specifically: Are dominated strategies
wiped out in the long run? Will aggregate behavior tend toward a Nash equi-
librium of the game? Are some Nash equilibria more likely to emerge in this
fashion than others? What is the nature of long-run aggregate behavior if it
does not settle down on some equilibrium? These are the kinds of questions
addressed in this book.

Similar questions have, of course, been raised in the domains of economics
and biology. Market competition is usually thought to weed out firms that are
not profit maximizers and to bring about the equilibrium outcomes predicted
by economic theory. This is the basis for the so-called “as if” defense of eco-
nomic theory, which claims that it is not important that managers think the
way microeconomic theory says they do; what counts is whether they behave
as if they did (Friedman 1953). Likewise natural selection is usually thought
to result in animal behavior that is well adapted to the environment. In the
simplest cases this environment is exogenously fixed, while in other cases the
environment of an individual is itself composed of other individuals who are
subject to the same forces of natural selection (this is also true for market se-
lection). What is optimal for an individual or firm in such an interactive setting
is endogenous in the sense of depending on the distribution of behaviors in the
population with which the individual or firm interacts. Evolutionary game the-
ory is designed to enable analysis of evolutionary selection in precisely such
interactive environments.

1. In his unpublished Ph.D. dissertation (Nash 1950a) John Nash suggests a population-statistical
interpretation of his equilibrium concept in which he imagines that players are randomly drawn
from large populations, one for each player position in the game. These players were not assumed
to “have full knowledge of the total structure of the game, or the ability and inclination to go
through any complex reasoning process” (op. cit., p. 21); see Leonard (1994), Weibull (1994), and
Bjornerstedt and Weibull (1993).



Xiv Introduction

Plan of the Book

Evolutionary game theory provides a tool kit of wide applicability. Its poten-
tial domain ranges from evolutionary biology to the social sciences in general
and economics in particular. This book does not try to cover all the develop-
ments in the field, not even all the most important ones. Instead, it strives to
give a self-contained treatment of a selected set of core elements, focused on
conceptual and technical connections between evolutionary and noncoopera-
tive game theory.

Chapter 1 gives a concise introduction to noncooperative game theory. No-
tation, definitions, and results of relevance to the subsequent discussion are
introduced, along with a number of examples that are used throughout the
book. Chapters 2 through 4 deal with single-population evolutionary models of
pairwise interactions represented as a symmetric two-player game. Chapter 2
considers a few static models, centered around the key concept of an evolu-
tionarily stable stragegy. Chapter 3 focuses on a particular dynamic model of
evolutionary selection in continuous time, the so-called replicator dynamics.
Chapter 4 develops a few variations on the theme in chapter 3, including dy-
namic models of social evolution. Chapter 5 develops both static and dynamic
models of multipopulation interactions represented as an n-player game. The
dynamic models developed in chapters 3 through 5 use systems of ordinary
differential equations to describe the evolution of aggregate behavior over
time. Chapter 6 provides a concise introduction to the theory of ordinary dif-
ferential equations. All chapters contain examples that illustrate the workings
of the discussed methods.

The presentation of the material in many instances proceeds from the spe-
cial to the general. Several themes first appear in simple examples, thereafter
in specific but broader contexts, and finally in more general and abstract set-
tings. It may annoy some mathematically well-versed readers to first see a
claim proved in a special case and later in a more general case. However, it
is hoped that this procedure will facilitate an operational “hands on,” and not
only abstract, understanding of the methods used.

The reader is assumed to have some familiarity with standard notions in
mathematics (basic set theory, topology, and calculus) at about the level
achieved after the first year of graduate studies in economics. Although chap-
ter 1 provides the tools needed from noncooperative game theory, this treat-
ment will most likely appear terse for a reader who is not acquainted with the
basic ideas in noncooperative game theory. Also here the reader is presumed to
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have a knowledge at about the level achieved after first-year graduate studies
in economics.

How to read the book, and how to use it in class? One obvious way is to
read chapter 1, selected parts of chapter 2, make a short excursion into selected
parts of chapter 6, and finally read selected parts of chapters 3 through 5. A
shorter course could focus on parts of chapters 1, 2, 3, and 5 (e.g., sections
1.1-1.3,1.5,2.1-2.3,3.1-3.3, 3.5, and 5.2).

To enable a self-contained and yet concise treatment, only deterministic
models of games in normal form are discussed in this book, despite the fact
that there now are a few promising evolutionary stochastic models and evo-
lutionary models of extensive-form games. Each of these two extensions of
the scope would require additional technical machinery. The reader who is
interested in these and other developments in evolutionary game theory not
covered here may consult the bibliography at the end of the book. For ex-
ample, stochastic models are discussed in Foster and Young (1990), Kandori,
Mailath, and Rob (1993), and Young (1993). Models of games in extensive
form may be found in Selten (1983), van Damme (1987), and Noldeke and
Samuelson (1993). A number of other important contributions can be found in
recent issues of economics and biology journals.
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Mathematical Notation

Lowercase letters are mostly used for real numbers, vectors of real numbers,
and for functions, while capital letters usually signify matrices and sets. Eu-
clidean spaces are typically denoted R”, where n is a positive integer—the
dimension of the space. The subset of vectors x in R" that have all coordinates
x; nonnegative is denoted R”, and the subset of vectors that have all coordi-
nates positive is written R? , . The inner (or scalar) product of two vectors x
and y in R" is a real number (scalar) written x - y =) ©_, x;¥;. The euclidean
norm (or length) of a vector x € R" is denoted ||x || = 4/ - x, and the distance
between two points (vectors) x and y in R" is written d(x, y) = ||x — y||. The
transpose of an z x n matrix A is denoted A7 .

In this book C denotes weak set inclusion. Hence X C Y signifies that all
elements of X are also elements of Y. The complement of a set X C R" is
written ~ X. By a neighborhood of a point (vector) x in R” is meant an open
set U C R" containing x. The interior of a set X C R™ is written int(X); this is
the subset of points x in X such that X also contains some neighborhood of x.
The boundary of a set X C R" is written bd(X); this is the set of points y € R"
such that every neighborhood of y contains some point from X and some point
from ~ X. The closure of a set X C R" is denoted X this is the union of X
and its boundary. A function f from a set X to a set ¥ is viewed as a rule that
to each element x of X assigns precisely one element, f(x), of Y. Likewise a
correspondence ¢ from a set X to a set Y is a rule that to each element x of X
assigns precisely one nonempty subset, ¢(x), of Y.
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1 Elements of Noncooperative Game Theory

This chapter provides an introduction to the concepts and results in noncoop-
erative game theory that will be used in the subsequent evolutionary analysis.
The material in this chapter is organized as follows: In section 1.1 the structure
of finite normal-form games is outlined. In particular, the geometry of strategy
spaces and multilinearity of payoff functions is emphasized. Section 1.2 dis-
cusses dominance orderings of a player’s strategy space and formalizes the no-
tion of “best replies.” Section 1.3 considers Nash equilibria as fixed points of
the best-reply correspondence, and studies some properties of the set of Nash
equilibria. Section 1.4 gives a brief account of some point- and setwise refine-
ments of the Nash equilibrium concept. Section 1.5 introduces some special
notation for, and properties of, symmetric two-player games; the basic setting
in chapters 2 through 4. Many of the examples introduced in the chapter will
be used later to illustrate evolutionary concepts.

The reader who wishes to have a fuller treatment of noncooperative game
theory is advised to consult Fudenberg and Tirole (1991) or, for a more concise
and technical treatment, van Damme (1987).

1.1 Strategies and Payoff Functions

The analysis in this book is restricted to finite games in normal form. More
precisely, let I ={1,2,...,n} be the set of players, where n is a positive
integer. For each player i € I, let 5; be her finite set of pure strategies.
For notational convenience, we will label every player’s pure strategies by
positive integers, Hence the pure-strategy set of any player i € [ is written
Si =11,2,...,m;}, for some integer m; > 2. A vector s of pure strategies,
§ = (51,52, - .., Su), Where s; is a pure strategy for player 7, is called a pure-
strategy profile. The set of pure strategy profiles in the game is thus the
cartesian product S = x;S; of the players’ pure strategy sets, sometimes to
be called the pure-strategy space of the game.

For any strategy profile s € S and player i € 1, let m;(s) € R be the associ-
ated payoff to player i. In economics the payoffs are usually firms’ profits or
consumers’ (von Neumann-Morgenstern) utility, while in biology payoffs usu-
ally represent individual fitness (expected number of surviving offspring). The
finite collection of real numbers 7;(s) defines the ith player’s (pure-strategy)
payoff function 7; : S — R, for each player i € I. The combined pure-strategy
payoff function of the game, r : § — R", assigns to each pure-strategy profile
s the full vector 7 (s) = (71(s), . .., m,(s)) of payoffs.
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In terms of pure strategies, a game in normal form may be summarized as
a triplet G = (I, S, w), where ] is its player set, S its pure-strategy space,
and 7 its combined payoff function. In the special case when there are only
two players, one may conveniently write each of the two payoff functions my
and 73 in tabular form as an m; x my matrix. We will usually denote the first
player’s payoff matrix A = (ay;), where apr = w1 (h, k) for each h € 57 and
k € 8, and will likewise denote the second player’s payoff matrix B = (by),
where by, = ma(h, k). Each row in both matrices thus corresponds to a pure
strategy for player 1, and each column to a pure strategy for player 2. Any
two-player game can be fully represented by the associated payoff matrix pair
(A, B), where player 1 is understood to be the “row player” and player 2 the
“column player.”

Example 1.1 The most widely known game is probably the Prisoner’s
Dilemma Game, a two-player game in which each player has only two pure
strategies. A typical configuration of payoffs is given in the matrix pair

4 0 4 5
A=(5 3), B=(0 3). 1.n

Evidently player 1’s second pure strategy (“defect”) gives a higher pay-
off than her first pure strategy (“cooperate’™), irrespective of which strategy
is used by player 2; each entry in the second row of matrix A exceeds
the corresponding entry in the first row. Likewise player 2’s second pure
strategy always gives her a higher payoff than her first pure strategy; each
entry in B’s second column exceeds the corresponding entry of its first col-
umn. Hence individual rationality leads each player to select her second
pure strategy (defect). The dilemma consists in the fact that both players
would earn higher payoffs if they were to select their first pure strategy
(cooperate).

1.1.1 The Geometry of Mixed-Strategy Spaces

A mixed strategy for player i is a probability distribution over her set S; of
pure strategies. Since for each player i € I the set S; is finite, we can represent
any mixed strategy x; for player i as a vector x; in m;-dimensional euclidean
space R™:, its hth coordinate x;;, € R being the probability assigned by x; to
the player’s Ath pure strategy.



