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Preface

This set of tables grew out of our dissatisfaction with the customary
placement of statistical tables at the end of textbooks of biometry and statis-
tics. Serious users of these books and tables are constantly inconvenienced by
having to turn back and forth between the text material on a certain
method and the table necessary for the test of significance or for some other
computational step. Occasionally, the tables are interspersed throughout a
textbook at sites of their initial application; they are then difficult to locate,
and turning back and forth in the book is not avoided. Frequent users of
statistics, therefore, generally use one or more sets of statistical tables, not
only because these usually contain more complete and diverse statistical tables
than the textbooks, but also to avoid the constant turning of pages in the
latter.

When we first planned to write our textbook of biometry (cited below),
we thought to eliminate tables altogether, asking readers to furnish their own
statistical tables from those available. However, for pedagogical reasons, it
was found desirable to refer to a standard set of tables, and we consequently
undertook to furnish such tables to be bound separately from the text. Once
embarked upon the task of preparing these tables, we gave considerable
thought to making them as useful as we could for statistical work in the
biological and social sciences. The following guidelines served us in compiling
this collection.

The tables must be as up to date as possible. We have included tables for
several statistical techniques developed in the last decade or so. Examples in
point are Table G of f In f for the G-test, or Table V of shortest unbiased con-
fidence intervals for the variance. Since the tables are designed for use in the
1960’s and 1970’s, the availability of at least desk calculators has been as-
sumed. Thus, there are no square root tables as such, but square root and cube
root tables for calculating machines are given (Tables A and B).

Most of the tables are computer-generated. The equations used are given
to explain how the tables were prepared. Where library functions were used,
these were from the FORTRAN IV compiler for the IBM 7040 and GE 625
computers. Mathematical tables have generally been omitted, except for the
bare minimum necessary in ordinary statistical work.

An introductory section on interpolation precedcs the main body of the

\bles.” Each table is accompanied by a brief explanation of its nature, a
monstration-of how to look up a value in it, references to the section (or



sections) in our textbook of biometry (R. R. Sokal and F. J. Rohlf, Biomelry,
W. H. Freeman and Company, San Francisco and London, 1969) giving ex-
planations and applications of this table, and by a short note on the method of
generation of the table. All references to section, table, or box number un-
accompanied by a citation of authors are to this textbook. (Those who use the
set of tables but not the textbook should simply disregard these references.)

Several of the tables would have been very complicated and tedious to
recompute. These have been copied with permission of authors and publishers,
whose courtesy is here acknowledged collectively. We are indebted to the
Literary Executor of the late Sir Ronald A. Fisher, F.R.S., Cambridge, to Dr.
Frank Yates, F.R.S., Rothamsted, and to Messrs. Oliver and Boyd, Limited,
Edinburgh, for permission to reprint tables III and XX from their book
Statistical Tables for Biological, Agricultural and Medical Research. Other spe-
cific acknowledgements are found beneath each table concerned. We appreciate
the constructive comments of Professor K. R. Gabriel (Hebrew University),
who read a draft of the introductory material.

We hope that users of statistics will find our tables as useful as we have
already found them to be in our work. We shall be grateful for any suggestions
about changes, additions, or deletions as well as for any corrections.

F. J. Rohlf
R. R. Sokal
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Introduction: Interpolation

Finding a value of a function for an argument that is intermediate be-
tween two arguments in a table requires inferpolation. In some tables published
earlier, aids to mental interpolation (proportional parts) are furnished. Since
the present tables are oriented toward use with calculating machines, we fur-
nish several formulas especially adapted for machine interpolation.

We shall employ the following symbolism. The tabled arguments to each
side of the desired argument X, are identified as X; and Xo, réspectively.
Argument X; must lie between the tabled arguments, X; < X; < X; or
X, > X; > X,. The functions shown in the table are Z; and Z, corresponding
to X, and X, and the desired function corresponding to argument X is labeled
Z i

The simplest method is linear interpolation. It assumes that the function
Z = f(X) is approximately linear over the interval from X, to X,. It serves as
an adequate method where the interval over which one needs to interpolate
is not very wide, or where the function is either truly or approximately linear
in that interval. The effect of linear interpolation is seen in the accompanying
figure, which illustrates a linear function approximating a curvilinear function
over the interval from X, to X,. The true function Z; corresponding to argu-
ment X, is approximated by the linear interpolate Z .

To carry out a linear interpolation on a desk calculator, first compute
p = (X: — X1)/(X2'— X,). Then substitute the given values of the function
and p into the following equation:

Z! = pZy + 1- 'P)Zl

The coefficients p and 1 — p represent complementary proportions of the
distance from the tabled arguments to the intermediate value. When, as fre-
quently happens, the length of the interval from X, to X, is 1, the computation
is especially simple, since p = X; — X,. Some examples will show the use of
this equation. Suppose we wish to find the value of —In 0.133. In Table F we
find arguments X; = 0.13, X, = 0.14 and corresponding functions Z, = 2.0402
and Z, = 1.9661. We compute p = (0.133 — 0.13)/(0.14 — 0.13) = 0.003/0.01
= 0.3.

Z{ = (0.3)(1.9661) + (0.7)(2.0402)
= 2.01797, which is rounded back to 2.0180.

This compares with 2.0174 given in more detailed mathematical tables.



When evaluating such an equation on a desk calculator, a partial check is
furnished in the counter dials, where, after the accumulative multiplication,
1 = p + (1 — p) will be found. The interpolated value Z ./ will be in the long
dials of the machine.

Another example is shown in which the length of the interval from X, to
X, is 1. Thus p is simply X; — X,. As an example interpolate for f In f in
Table G when f = 103.5.

Z! = (0.5)(483.017) + (0.5)(477.377) = 480.197

The correct value, shown in Table G*, is 480.196.

Inverse interpolation is employed to evaluate an argument given a value
of a function intermediate between two tabled values. Using the same sym-
bolism as above, one approximates the desired argument X; by X/ as follows:

—Z)(X: — Xy)

o= (Z.
Xl _Xl+ Zz‘_Zl

By way of an illustration, interpolate for the argument in the earlier example
from Table F, where 2.01797 was obtained as the interpolated value for
—In 0.133. Bracketing this value Z; are functions Z; = 2.0402 and Z, =
1.9661. The corresponding arguments in the table are X; = 0.13 and X, =
0.14. On substitution in the inverse interpolation formula, one obtains

- (2.01797 — 2.0402)(0.14 — 0.13)
L —

X =013+ 1.9661 — 2.0402

~ (—0.02223)(0.01)

=018 +——0 071

= 0.13 + 0.003

= 0133

Four-point interpolation may provide more exact results than linear inter-
polation. The symbolism is as before, except that Z, is the tabled function
corresponding to X, the argument before X,, and Z; is the function corres-
ponding to X3, the argument after X,. It is assumed that the X’s are equally
spaced.

z: =32 + @ - PlpZe + (1 - 921 - L2 (1 + p)Zs +
@ — p)Zd)

Applying this formula to the problem of finding Z,’ when X; = —1n 0.133,
handled above by linear interpolation, one obtains from Table F: X, = 0.13,
X, =0.14, Z, = 2.1203, Z, = 2.0402, Z, = 1.9661, Z; = 1.8971. Therefore
p = (0.133 — 0.13)/(0.14 — 0.13) = 0.3. Solving for Z/, one obtains



Z{= ${2 + (0.3 — 0.3%)][(0.3)(1.9661) + (1 — 0.3)(2.0402)]

_03-03) 14 4 03)(1.8071) + (2 — 0.3)(2.1203)])

3
${[2.21)[2.01797] — 0—'321 [6.07074];

${4.4597137 — 0.4249518)

= 2.0173810, which is rounded back to 2.0174 and agrees with the
correct value.

Many tables, such as Table Q, are arranged for harmonic interpolation.
For the upper range of the arguments, functions in these tables will be approxi-
mately linearly related to the reciprocal of the arguments. Usually the argu-
ments are degrees of freedom spaced as follows: 30, 40, 60, 120, «. For pur-
poses of convenience in interpolation these are changed by dividing them into
the last finite value of the argument, yielding 120/30, 120/40, 120/60, 120/120,
120/ =, or 4, 3, 2, 1, 0. These integral values are the new arguments; functions
for any argument between these tabled values are linearly interpolated be-
tween these transformed values. One advantage of this method is that it
permits interpolation between a finite and an infinite argument. An example
will illustrate the method. Find the value of ¢.¢01(200;. In Table Q can be found

Zy = t.ooipze; = 3.373 and Z» = ¢ o0110) = 3.291. Change the arguments X, = 120

and X; = = to X, = 120/120 = 1 and X, = 120/ = 0, respectively. Evalu-
ate X, as 120/200 = 0.6, and apply the formula for linear interpolation:

p=(06—1)/(0—-1)=04

Z! = (0.4)(3.291) + (0.6)(3.373)
= 3.3402, which is rounded back to 3.340.

xi
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TaBLE A. Computation of square roots on a desk calculator.

This table furnishes constants necessary to obtain square roots on a desk
calculator. The number whose square root is to be obtained is entered into
the long (accumulating) dials, the appropriate constant is added, and the
sum is divided by a second constant. The square root appears in the short
dials, correct to five significant figures with a maximal error of 1 in the fifth
significant digit.

Numbers with one or two significant digits to the left of the decimal point
should be. entered into the keyboard, allowing for at least five decimal places
to the right of the decimal point. They are transferred into the long dials by
means of the enter dividend key. Set the tabs to obtain seven decimal places
in the quotient. Thus 1.234 should be entered in the keyboard as 1.23400.
Now consult the table. In the first column you will find class limits at varying
intervals ranging from 1.000 to 100.000. Find the two limits bracketing the
number whose square root you want. Thus, in the case of 1.234, the class
limits are 1.230 and 1.259. The values in columns 2 and 3 between these class
limits are employed.-in obtaining the square root. Add the value in the second
column (1.24454) to the number 1.234 already in the long dials of the machine
to obtain 2.47854. Divide this sum by the divisor in column 3 (2.2312). All
numbers must be properly aligned on the keyboard in terms of their decimal
points. The quotient 1.1108551 is recorded as the square root 1.1109, correct
to five significant figures. In general the fifth digit may be in error by +1 (in
our example the actual square root is 1.1108555). Numbers with more than
two significant digits to the left of the decimal point and those with no sig-
nificant digits to the left of the decimal point are divided or multiplied, re-
spectively, by even powers of 10 (102, 10¢, 10, . . .) until either one or two
significant digits are obtained to the left of the decimal point. The square root
is then computed as shown above and is corrected by multiplying or dividing
by 107/2, the original number having been divided or multiplied by 10?. As an
example, find the square root of 0.005278. Multiply this by 10* to obtain 52.78.
In the table this value is bracketed by 52.481 and 53.703, yielding constants
in columns 2 and 3 of 53.0893 and 14.5726, respectively. The computation
(52.78 + 53.0893) =+ 14.5726 yields 7.2649562, which is rounded to 7.2650,
again with a possible error of + 1 in the last digit. To obtain the correct square
root, divide by 1072 = 10%2 = 102, which yields 0.072650. As a check, square
this number and obtain 0.005278022500. When the number whose square root
is sought happens to be exactly one of the class limits in column 1 of the table,



you are free to choose the constants above or below the limit for the compu-
tation.

Other methods of obtaining square roots are by means of Table C, com-
mon logarithms (where 1/ is found as antilog 4 log X), or by the direct
method for calculating a square root given as exercise 5 of the basic mathe-
matical operations in Appendix A2. The square root can be read off directiy
in Table I for integers between 0 and 999 and in Table F for numbers between
0and 1.

The table was computed using a Tschebyscheff approximation and the
spacing of the arguments was adjusted so that the maximum relative error,
which is < 10—%, would be constant for the entire range of the table.
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TABLE A. Computation of square roots on a desk calculator.
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3.8774
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14.454
146220
14791
14.9627
150136
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15.488
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16.7884
16,982
17.1795
17.378
175797
17.783
179892
18197
18.4081
18.621
1848370
19.055
192757
19498
19.7244
19953
201840
20417
2066540
204893
211353
21.380
216277
21.878
2261315
224387
226468
220909
2301742
230442
237141
23.988
2402666
240547
2448319
256119
2504103
25.704
2640019
260303
2646076
266915
272276
27542
278616
28,184

®3)
Te6478
Te7364
T¢8259
79166
8,0082
80,1010
8.1948
842897
843857
8.4828
85810
8.6804
8,7809
8.8825
809854
9.0894
961947
9f3°12
94089
945178
966280
97395
98523
969664
10,0818
10.1985
1663166
10,4361

105569

n @
28.184
2845109
28.840
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31,9892
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3442775
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38,019
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5443256
540954

TABLE A. Computation of square roots on a desk calculator.
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106792
10,8028
109279
110545
11.1825
113119
114429
115754
11,7095
11.8451
11.9822
12,1210
12,2613
12,4033
12,5469
1266922
12,8392
12,9878
13,1382
132904
13.4443
1345999
13,7574
1349167
14,0779
1462409
14,4058
1445726

14,7413



1 @
540954
5545910
56234
568861
57544
5802114
584884
595673
606256
609545
61659
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63.096
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97724
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17.1213
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17,5201
17.7230
17.9282
18,1358
18,3458
1845583
18,7731
18,9905
192104
1904329
19,6579

19.8855



