Solving Linear Systems on VeCjgim
and Shared Memory Compute

Jack J. Dongarra, lain S. Duff,
Danny C. Sorensen, and Henk A. van der Vorst

77 754 7
G
7

7/ ////f/:/’ |

Solving Linear Systems on Vector
and Shared Memory Computers

Jack J. Dongarra
University of Tennessee and
Oak Ridge National Laboratory

Iain S. Duff

Rutherford Appleton Laboratory,
CERFACS, and

University of Strathclyde

Danny C. Sorensen
Rice University

Henk A. van der Vorst
Utrecht University

SIdImL. Philadelphia

Society for Industrial and Applied Mathematics

The royalties from the sales of this book are being placed in a fund to help students
attend SIAM meetings and other SIAM related activities. This fund is administered by
SIAM and qualified individuals are encouraged to write directly to SIAM for guidelines.

© 1991 by the Society for Industrial and Applied Mathematics
Second printing 1993.

All rights reserved. No part of this book may be reproduced, stored, or transmitted in
any manner without the written permission of the Publisher. For information, write the
Society for Industrial and Applied Mathematics, 3600 University City Science Center,
Philadelphia, Pennsylvania 19104-2688.

Library of Congress Cataloging-in-Publication Data

Solving linear systems on vector and shared memory computers / Jack J.
Dongarra ... [et al.].
. cm.
Includes bibliographical references and index.
ISBN 0-89871-270-X
1. Algebras, Linear-Data processing. 2. Vector processing
(Computer science) 3. Parallel processing. (Electronic computers)
I. Dongarra, J. dJ.
QA184.865 1991
512°.5-dc20 90-24045

siam. is a registered trademark.

Preface

The purpose of this book is to unify and document in one place many of the techniques and much of
the current understanding about solving systems of linear equations on vector and shared-memory
parallel computers. This book is not a textbook, but it is meant to provide a fast entrance to the
world of vector and parallel processing for these linear algebra applications. We intend this book
to be used by three groups of readers: graduate students, researchers working in computational
science, and numerical analysts. As such, we hope this book can serve both as a reference and as
a supplement to a teaching text on aspects of scientific computation.

The book is divided into four sections: (1) introduction to terms and concepts, including an
overview of the state of the art for high-performance computers and a discussion of performance
evaluation (Chapters 1-4); (2) direct solution of dense matrix problems (Chapter 5); (3) direct
solution of sparse matrix problems (Chapter 6); and (4) iterative solution of sparse matrix problems
(Chapter 7). Any book that attempts to cover these topics must necessarily be somewhat out of
date before it appears, because the area is in a state of flux. We have purposely avoided highly
detailed descriptions of popular machines and have tried instead to focus on concepts as much as

possible; nevertheless, to make the description more concrete, we do point to specific computers.

Rather than include a floppy disk containing the software described in the book, we have
included a pointer to netlib. The problem with floppies in books is that they are never around
when one needs them, and the software may undergo changes to correct problems or incorporate
new ideas. The software included in netlib is in the public domain and can be used freely. With
netlib we hope to have up-to-date software available at all times. A directory in netlib called ddsv
contains the software, and Appendix A of this book discusses what is available and how to make a
request from netlib.

This book only touches on topics relating to massively parallel SIMD computers and distributed-
memory machines, partly because our experience lies in shared-memory architectures and partly
because the areas of massively parallel and distributed-memory computing are still rapidly changing.
We express appreciation to all those who helped in the preparation of this work, in particular to Gail

ix

X PREFACE

Pieper for her tireless efforts in proofreading drafts and improving the quality of the presentation;
Ed Anderson, Mary Drake, Jeremy Du Croz, Peter Mayes, Esmond Ng, Al Geist, Giuseppe Radicati,
and Charlie Van Loan for their help in proofreading and their many suggestions to improve the
readability; and Reed Wade for his assistance in preparing the figures.

Contents

Introduction 1
1 Vector and Parallel Processing 3
1.1 Traditional Computers and Their Limitations 3
1.2 Parallelism within a Single Processor 4
1.2.1 Multiple Functional Units 4
1.2.2 Pipelining L e e e e e 4
1.2.3 Overlapping e e e e e 6
124 RISC | i ss s 65 8o 5o i 6k 6005 8 » & d 5m s 6 6 b o5 & s @5 b ad i 7
1285 WLIW . 2 s 56 00 8 9 i md 0.0 2 o o 55 2 m 8 @ 508 w8 56 bk u db 8
1.2.6 Vector Instructions 8

127 CHRTIRE . o« s 56 25 s 55 56 555 bm 0k s & 68 s v s 5 inisnibmin 9
1.2.8° Memory-to-Memory and Register-to-Register Organizations 10
1.29 Register Set ¢ o : o+ aw s v s 55 s 5 ¢ 6555 v 5 6 5w s 5 w8 65 5% 5 &5 10
12,30 STOPIIRINGE - o o 6o o ¢ o5 60 5 5 8 ws s me 58 B @ § B s @ 5 6@ 0% § Fod s 11
1.2.11 Reconfigurable Vector Registers 11
1.2.12 Memory Organization 12

1.3 Data Organization 14
1.3.1 Main Memory e e 14
1.3.2 Cache 16

il

v

1.3.3 Local Memory
1.4 Memory Management

1.5 Parallelism through Multiple Pipes or Multiple Processors

1.6 Interconnection Topology
1.6.1 Crossbar Switch
1.6.2 Timeshared Bus
1.6.3 Ring Connection
1.6.4 Mesh Connection
1.6.5 Hypercube o
1.6.6 Multistaged Network

1.7 Programming Techniques

Overview of Current High-Performance Computers

2.1 Supercomputers h e e e e e e e
2.2 Mini-Supercomputers e e
2.3 Vector Mainframeso
2.4 Novel Parallel Processors

Implementation Details and Overhead

3.1 Parallel Decomposition and Data Dependency Graphs
3.2 Synchromization
3.3 Load Balancing
3.4 Recurrence e e
3.5 Indirect Addressing

Performance: Analysis, Modeling, and Measurements

4.1 Amdahl’sLaw. o i i
4.1.1 Simple Case of Amdahl’s Law
4.1.2 General Form of Amdahl’s Law

CONTENTS

CONTENTS v

4.2 Vector Speed and Vector Length, 56
4.3 Amdahl’s Law—Parallel Processing 57
431 ASimple Model ¢ oivieocanmsnnssnsocsssonss 57
4.3.2 Gustafson’s Model e 60

4.4 Examples of (7o, ny/2)-values for Various Computers 60
4.4.1 CRAY-1 and CRAY-2 (0ne processor) v« v v v v v v v v v v v o 62
4.4.2 CRAY X-MP (one processor; clock cycle time 8.5 nsec) 63
4.4.3 CYBER 205 (2-pipe) and ETA-10P (single processor) 63
4.4.4 1BM 3090/VF (1 processor; clock cycle time 18 5mnsec) 64
4.4.5 NEC SX/2 . . o e e e e e e e e 65
4.4.6 Convex C-1and Convex C-210 i, 66
4.4.7 Alliant FX/80 o o i e e e e e e e e e e 66
4.4.8 General Observations e e 68

4.5 LINPACK Benchmark ittt 68
4.5.1 Description of the Benchmark 68
4.5.2 Calls tothe BLAS e 69
4.5.3 Asymptotic Performance. Lo 69

5 Building Blocks in Linear Algebra 75
5.1 Basic Linear Algebra Subprograms L L. 75
5.1.1 Level 1 BLAS e e 76
5.1.2 Level 2 BLAS e e 77
;1.3 Level 3BLAS . ¢ ¢ 5 ¢ 5w w5 5 06 5 d a5 5 58 66 a0 648 aitnsmmnsoeos 78

5.2 Levelsof Parallelismttt 81
5.2.1 Vector Computers v vt v it e e e 81
5.2.2 Parallel Processors with Shared Memory 82
5.2.3 Parallel-Vector Computers 83

5.2.4 Clusters of Parallel Vector Processors v v v v v v v vv v .. 84

vi

CONTENTS

5.3 Basic Factorizations of Linear Algebra 84
5.3.1 Point Algorithm: Gaussian Elimination with Partial Pivoting 84
5.3.2 Special Matriceso e e 86

5.4 Blocked Algorithms: Matrix-Vector and Matrix-Matrix Versions 89
5.4.1 Right-Looking Algorithm 90
5.4.2 Left-Looking Algorithm, 92
5.4.3 Crout Algorithm . . « . . & « s s 56 4 5« 50 4% s 68 s 0 o 6 s 6 5 6o 50 s 5 93
5.4.4 Typical Performance of Blocked LU Decomposition 94
5.4.5 Blocked Symmetric Indefinite Factorization 95
5.4.6 Typical Performance of Blocked Symmetric Indefinite Factorization. 98

5.5 Linear Least Squares e e e e e e e e e e e 98
5.5.1 Householder Method 99
5.5.2 Blocked Householder Method 100
5.5.3 Typical Performance of the Blocked Householder Factorization 101

5.6 Organization of the Modules 102
56.1 Matrix-VectorPro@uet « « ¢ v ov s v 6 + 5w 56 5 6% 516 €6 s 56 5.4 85 3 102
5.6.2 Matrix-Matrix Product L 103
5.6.3 Typical Performance for Parallel Processing 104
5.6.4 Benefits e e 105

5.7 LAPACK . . . o e e e 106

Direct Solution of Sparse Linear Systems 109

6.1 Introduction to Direct Methods for Sparse Linear Systems 111
6.1.1 Three Approaches 111
6.1.2 Description of Sparse Data Structure 112
6.1.3 Manipulation of Sparse Data Structure 114

6.2 General Sparse Matrix Methods, 116

6.3 Methods for Symmetric Matrices and Band Systems 124

CONTENTS vii

6.3.1 The Clique Concept in Gaussian Elimination 125
6.3.2 Code Performance and Symmetry 128

6.4 Frontal Methods @ . @ i i e e 130
B4l Organization : s o s 5 s 5w sms v s oms oo om s @56 nawes ey sess 130
6.4.2 Vector Performance e 132

6.5 Multifrontal Methods e 135
6.5.1 Performance on Vector Machines 139
6.5.2 Performance on Parallel Machines 139

6.6 Other Approaches for Exploitation of Parallelism 141
6.7 Software e e e e e e 141
6.8 Brief Summary L e e e e e e 142
7 Iterative Solution of Sparse Linear Systems 143
7.1 Tterative Methods L 145
7.1.1 Conjugate Gradient 145
7.1.2 Least Squares Conjugate Gradients 148
7.1.3 Biconjugate Gradients 150
7.1.4 Conjugate Gradient Squared 152
7.1.5 GMRES and GMRES(m) e 154
7.1.6 Adaptive Chebychev 156

7.2 Vector and Parallel Aspects 158
7.2.1 General Remarks 158
7.2.2 Sparse Matrix-Vector Multiplication 160
7.2.3 Performance of the Unpreconditioned Methods 164

7.3 Preconditioning e, 165
7.3.1 General Aspects e e e e e e 165
7.3.2 Efficient Implementations 168

7.3.3 Partial Vectorization e 170

viii

7.3.4 Reordering the Unknowns
7.3.5 Changing the Order of Computation
7.3.6 Some Other Vectorizable Preconditioners
7.3.7 Parallel Aspects e
7.4 Experiences with Parallelism
7.4.1 General Remarks
7.4.2 Overlapping Local Preconditioners
7.4.3 Repeated Twisted Factorization
7.4.4 Twisted and Nested Twisted Factorization

7.4.5 Hyperplane Ordering

Acquiring Mathematical Software

Glossary

Information on Various High-Performance Computers
Level 1, 2, and 3 BLAS Quick Reference

Operation Counts for Various BLAS and Decompositions

Index

CONTENTS

191

197

213

221

227

247

Introduction

The recent availability of advanced-architecture computers has had a very significant impact on
all spheres of scientific computation including algorithm research and software development in
numerical linear algebra. This book discusses some of the major elements of these new computers
and indicates some recent developments in sparse and full linear algebra that are designed to exploit
these elements.

The two main novel aspects of these advanced computers are the use of vectorization and
parallelism, although how these are accommodated varies greatly between architectures. The first
commercially available vector machine to have a significant impact on scientific computing was the
CRAY-1, the first machine being delivered to Los Alamos in 1976. Thus, the use of vectorization is
by now quite mature, and a good understanding of this architectural feature and general guidelines
for its exploitation are now well established. However, the first commercially viable parallel machine
was the Alliant in 1985, and more massively parallel machines did not appear on the marketplace
until 1988. Thus, there remains a relative lack of definition and maturity in this area, although
some guidelines on the exploitation of parallelism are beginning to emerge.

We are algebraists rather than computer scientists; as such, one of our intentions in writing
this book is to provide the computing infrastructure and necessary definitions to guide the com-
putational scientist and, at the very least, to equip him or her with enough understanding to be
able to read computer documentation and appreciate the influence of some of the major aspects of
novel computer design. The majority of this basic material is covered in Chapter 1, although we
address further aspects related to implementation and performance in Chapters 3 and 4. In such a
volatile marketplace it is not sensible to concentrate too heavily on any specific architecture or any
particular manufacturer, but we feel it is useful to illustrate our general remarks by reference to
some currently existing machines. This we do in Chapter 2 and Appendix C, as well as in Chapter
4 where we present some performance profiles for current machines.

It would be neither practical nor sensible to cover all aspects of parallelism in a book of this size.
Instead, we have concentrated on the more well-established area of shared-memory architectures,
giving only outline information on distributed-memory and massively parallel architectures.

2 CONTENTS

Linear algebra—in particular, the solution of linear systems of equations—Ilies at the heart of
most calculations in scientific computing. We thus concentrate on this area in this book, examining
algorithms and software for dense coefficient matrices in Chapter 5 and for sparse systems in
Chapters 6 and 7, where we discuss direct and iterative methods of solution, respectively. Although
we have concentrated on this aspect of linear algebra, many of our observations and techniques
extend to other areas—for example, the eigenproblem or the solution of least-squares problems, of
which brief mention is made in Section 5.5.

Within scientific computation, parallelism can be exploited at several levels. At the highest level
a problem may be subdivided even before its discretization into a linear (or nonlinear) system.
This technique, typified by domain decomposition, usually results in large parallel tasks ideal
for mapping onto a distributed-memory architecture. In keeping with our decision to minimize
machine description, we refer only briefly to this form of algorithmic parallelism in the following,
concentrating instead on the solution of the discretized subproblems. Even here, more than one
level of parallelism can exist—for example, if the discretized problem is sparse. We discuss sparsity
exploitation in Chapters 6 and 7.

Our main algorithmic paradigm for exploiting both vectorization and parallelism in the sparse
and the full case is the use of block algorithms, particularly in conjunction with highly tuned kernels
for effecting matrix-vector and matrix-matrix operations. We discuss the design of these building
blocks in Section 5.1 and their use in the solution of dense equations in the rest of Chapter 5. We
discuss their use in the solution of sparse systems in Chapter 6, particularly Sections 6.4 and 6.5.

As we said in the Preface, this book is intended to serve as a reference and as a supplementary
teaching text for graduate students, researchers working in computational science, and numerical
analysts. At the very least, the book should provide background, definitions, and basic techniques
so that researchers can understand and exploit the new generation of computers with greater facility
and efficiency.

Chapter 1

Vector and Parallel Processing

In this chapter we review some of the basic features of traditional and advanced computers. The
review is not intended to be a complete discussion of the architecture of any particular machine
or a detailed analysis of computer architectures. Rather, our focus is on certain features that are
especially relevant to the implementation of linear algebra algorithms.

1.1 Traditional Computers and Their Limitations

The traditional, or conventional, approach to computer design involves a single instruction stream.
Instructions are processed sequentially and result in the movement of data from memory to func-
tional unit and back to memory. Specifically,

e a scalar instruction is fetched and decoded,

e addresses of the data operands to be used are calculated,
e operands are fetched from memory,

o the calculation is performed in the functional unit, and

e the resultant operand is written back to memory.

As demands for faster performance increased, modifications were made to improve the design of
computers. It became evident, however, that a number of factors were limiting potential speed: the
switching speed of the devices (the time taken for an electronic circuit to react to a signal), packaging

3

4 CHAPTER 1. VECTOR AND PARALLEL PROCESSING

and interconnection delays, and compromises in the design to account for realistic tolerances of
parameters in the timing of individual components. Even if a dramatic improvement could be made
in any of these areas, one factor still limits performance: the speed of light. Today’s supercomputers
have a cycle time on the order of nanoseconds. The CRAY-2, for example, has a cycle time of 4.1
nsec, and Cray Computer Company has announced machines with an expected cycle time of 1 nsec.
One nanosecond translates into the time it takes light to move about a foot (in practice, the speed
of pulses through the wiring of a computer ranges from 0.3 to 0.9 foot per nanosecond). Faced by
this fundamental limitation, computer designers have begun moving in the direction of parallelism.

1.2 Parallelism within a Single Processor

Parallelism is not a new concept. In fact, Hockney and Jesshope point out that Babbage’s analytical
engine in the 1840s had aspects of parallel processing [94].

1.2.1 Multiple Functional Units

Early computers had three basic components: the main memory, the central processing unit (CPU),
and the I/O subsystem. The CPU consisted of a set of registers, the program counter, and one
arithmetic and logical unit (ALU), where the operations were performed one function at a time. One
of the first approaches to exploiting parallelism involved splitting up the functions of the ALU—for
example, into a floating-point addition unit and a floating-point multiplication unit—and having
the units operate in parallel.

In order to take advantage of the multiple functional units, the software (e.g., the compiler) had
to be able to schedule operations across the multiple functional units to keep the hardware busy.
Also, the overhead in starting operations on the multiple units had to be small relative to the time
spent performing the operations. Once computer designers had added multiple functional units,
they turned to investigating better ways to interconnect the functional units, in order to simplify
the flow of data and to speed up the processing of data.

1.2.2 Pipelining

Pipelining is the name given to the segmentation of a functional unit into different parts, each of
which is responsible for partial decoding/interpretation and execution of an operation.

The concept of pipelining is similar to that of an assembly line process in an industrial plant.
Pipelining is achieved by dividing a task into a sequence of smaller tasks, each of which is executed
on a piece of hardware that operates concurrently with the other stages of the pipeline (see Figures

1.2. PARALLELISM WITHIN A SINGLE PROCESSOR 5

PRI :® STAGED STAGEb STAGE9 STAGED STAGED—ﬁ RESULTS

Stage 1 = Compare exponents

Stage 2 = Align operands accordingly

Stage 3 = Add exponents and multiply mantissas
Stage 4 = Determine normalization factor

Stage 5 = Normalize result

Figure 1.1: A simplistic pipeline for floating-point multiplication

[1T2]3}---{nN]

ATz 13}---{n]
ATz [3}---{x]
A2 [3}---{n]
(A2 5 }---{n]

Time —

Figure 1.2: Pipelined execution of an N-step process

1.1-1.3). Successive tasks are streamed into the pipe and get executed in an overlapped fashion
with the other subtasks. Each of the steps is performed during a clock period of the machine.
That is, each suboperation is started at the beginning of the cycle and completed at the end of the
cycle. The technique is as old as computers, with each generation using ever more sophisticated
variations. An excellent survey of pipelining techniques and their history can be found in Kogge
[111].

Pipelining was used by a number of machines in the 1960s, including the CDT 6600, the CDC
7600, and the IBM System 360/195. Later, Control Data Corporation introduced the STAR 100
(subsequently the CYBER 200 series), which also used pipelining to gain a speedup in instruc-
tion execution. In the execution of instructions on machines today, many of the operations are

6 CHAPTER 1. VECTOR AND PARALLEL PROCESSING

A=B*C+D*E e Scalar Pipelines and Instruction Reordering
V=W*X-Y*Z
v
B*C S,65,*S, l Conventional processing: Arithmetic
D*E ’ S,S,*S, | operations executed sequentially.
(B*C)+(D*E) S;S,+S;
W*X SsS5*Sq \
Y*Z {sﬂ—s,*ss |
(W*X)-(Y*Z) [S5S5-S,
B*C Instruction reordering and scalar
D*E pipelining give higher performance.
W*X
Y*Z
(B*C)+(D*E) S,<-S,+S,
(W*X)-(Y*Z) l—[ﬁts—\

Figure 1.3: Scalar pipelines

'pipelined—including instruction fetch, decode, operand fetch, execution, and store.

The execution of a pipelined instruction incurs an overhead for filling the pipeline. Once the
pipeline is filled, a result appears every clock cycle. The overhead or startup for such an operation
depends on the number of stages or segments in the pipeline.

1.2.3 Overlapping

Some architectures allow for the overlap of operations if the two operations can be executed by
independent functional units. Quverlap is similar but not identical to pipelining. Both employ the
idea of subfunction partitioning, but in slightly different contexts. Pipelining occurs when all of
the following are true:

¢ Each evaluation of the basic function (for example, floating-point addition and multiplication)
is independent of the previous one.

