

Fundamentals, Methods, and Applications
Second, Updated Edition

Edited by Michael Wink

+13.71

An Introduction to Molecular Biotechnology

Fundamentals, Methods, and Applications

Edited by Michael Wink

Second, Updated Edition

The Editor

Prof. Dr. Michael Wink Institute of Pharmacy and Molecular Biotechnology University of Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany

Cover

Pictures courtesy of Michael Knop, EMBL, Heidelberg (gel chromatography, pipet), National Human Genome Research Institute, Bethesda, USA (DNA), Fotolia/Franz Pfluegl (cereals), PhotoDisc/Getty Images (pills), Fotolia/SyB (stock exchange charts), Fotolia/Aintschie (law code) Limit of Liability/Disclaimer of Warranty: While the publisher and authors have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty can be created or extended by sales representatives or written sales materials. The Advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstraße 12, 69469 Weinheim

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical, and Medical business with Blackwell Publishing.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition K+V Fotosatz GmbH, Beerfelden Printing and Binding betz-druck GmbH, Darmstadt

Cover Design Formgeber, Eppelheim

Printed in the Federal Republic of Germany

Printed on acid-free paper

ISBN 978-3-527-32637-2

Preface

The term biotechnology was only coined in 1919 by the Hungarian engineer Karl Ereky. He used it as an umbrella term for methods by which microorganisms helped to produce valuable products. Humankind has been using biotechnological methods for thousands of years – think of the use of yeast or bacteria in the production of beer, wine, vinegar, or cheese.

Biotechnology is one of the key technologies of the twenty-first century. It includes established traditional industries such as the production of milk and dairy products, beer, wine, and other alcoholic drinks, as well as the production and biotransformation of enzymes, amino acids, vitamins, antibiotics, and other fine chemicals. This area, including the associated process engineering, is referred to as white or industrial biotechnology. As it is well established, it will only be treated in passing in Chapter 34. Many good books have been written to cover the field.

Breathtaking progress has been made in molecular and cell biology in the past 50 years, particularly in the last 20–30 years. This opens up new exciting perspectives for industrial applications. This area of applied biology is clearly distinguished from the traditional biotechnological fields and is known as **molecular biotechnology**. In a few years' time, however, it may well be regarded as another established branch of traditional biotechnology.

Molecular biology and cell biology have revolutionized our knowledge about the function and structure of macromolecules in the cell and the role of the cell itself. Major progress has been made in genomics and proteomics. A historic milestone was the sequencing of the human genome in 2001. At present, more than 1200 genomes of diverse organismal groups (including more than 100 genomes of eukaryotes) have been completely sequenced (http://www.ebi.ac.uk/genomes). As a next milestone it has been proposed to sequence 10000 genomes from species covering the tree of life (http://www.genome10k.org). With the new generation of DNA sequencers it is now possible to sequence the human genome in a matter of weeks. This new knowledge has had direct repercussions on medical science and therapy, as it is now possible for the first time to study the genetic causes of diseases. It should thus be possible in due course to treat the causes rather than the symptoms. High-throughput sequencing will probably become a routine diagnostic, which will allow personalized medical treatment. Opportunities open up for the biotech industry (red biotechnology) to develop new diagnostics and therapeutics such as recombinant hormones, enzymes, antigens, vaccines, and antibodies that were not available before the genetic revolution. In the field of green biotechnology, targeted modification of crop cultivars can improve their properties, such as resistance to pests or the synthesis of new products (including recombinant human proteins). In microbial biotechnology, production processes can be improved and new products can be created through combinatorial biosynthesis.

The term molecular biotechnology also covers state-of-the-art research in genomics, functional genomics, proteomics, transcriptomics, systems biology, gene therapy, or molecular diagnostics. The concepts and methods are derived from cell and molecular biology, structural biology, bioinformatics, and biophysics.

The success of molecular biotechnology has been considerable, if you look at the scientific and economic prowess of companies like Genentech, Biogen, and

ISBN: 978-3-527-32637-2

others. Already today total annual revenues from recombinant drugs exceeds US \$ 20 billion. Over 100 recombinant proteins have been approved by the US Food and Drug Administration and several hundred others are in the developmental pipeline.

As textbooks covering this extensive subject are few, a group of experts and university teachers decided to write an introductory textbook that looks at a wide variety of aspects. This is the English language version of the second edition of *An Introduction to Molecular Biotechnology*, which has been thoroughly updated, a new chapter on systems biology has been added (Chapter 23), and many illustrations are now in color.

The comprehensive introductory chapters (*Part I*) provide a brief compendium of the essential building blocks and processes in a cell, their structure, and functions. This information is crucial for the understanding of the following chapters, and while it cannot be a substitute for the profound study of more substantial and extensive textbooks on cell and molecular biology (Alberts *et al.*, 2008; Campbell and Reece, 2006), it gives a quick overview and recapitulation.

Part II contains short chapters discussing the most important methods used in biotechnology. Again, for a more thorough approach to the subject, consult the relevant textbooks.

Part III explores the different fields of molecular biotechnology, such as genome research, functional genomics, proteomics, transcriptomics, bioinformatics, systems biology, gene therapy, and molecular diagnostics. It not only gives a summary of current knowledge, but also highlights future applications and developments.

Part IV discusses the industrial environment of molecular biotechnology, including the business environment and difficulties young biotech firms have to cope with and their chances of success.

To give a snapshot of state-of-the-art research in an area where things move faster than anywhere else is next to impossible. Thus, it is inevitable that by the time this book goes into print, some developments will have superseded those described here. Although we have tried to include most relevant issues, the choice of topics must naturally limited in a such a textbook.

Forty-two coauthors worked on this project, and although we tried to find a more or less uniform style, the authors with their different views and values are still recognizable.

The publisher and editors would like to thank all authors for their constructive cooperation. Special thanks go to the team at Wiley-VCH (Dr. A. Sendtko, M. Petersen, H.-J. Schmitt) who gave their enthusiastic support to this project.

Heidelberg, Winter 2011

Michael Wink

List of Contributors

Michael Breuer BASF SE

Fine Chemicals & Biocatalysis

Research GVF/B - A030 67056 Ludwigshafen

Germany

Benedikt Brors

German Cancer Research Center Computational Oncology Im Neuenheimer Feld 580

69120 Heidelberg

Germany

Ulrich Deuschle

Phenex Pharmaceuticals AG

Waldhofer Str. 104 69123 Heidelberg

Germany

Stephan Diekmann

Leibniz Institute for Age Research

Fritz Lipmann Institute Beutenbergstraße 11

07745 Jena Germany

Stefan Dübel

Institute for Biochemistry

and Biotechnology

Technical University of Braunschweig

Spielmannstr. 7 38106 Braunschweig

Germany

Rainer Fink

Institute for Physiology and Pathophysiology University of Heidelberg Im Neuenheimer Feld 326

69120 Heidelberg

Germany

Gert Fricker

Institute of Pharmacy and Molecular Biotechnology University of Heidelberg Im Neuenheimer Feld 366

69120 Heidelberg

Germany

Marcus Frohme Molecular Biology

and Functional Genomics Technical University of Applied

Sciences
Bahnhofstraße
15745 Wildau
Germany

Reinhard Gessner

Visceral, Transplantation, Thorax

and Vascular Surgery University Hospital Leipzig

Liebigstr. 20 04103 Leipzig Germany

Ariane Groth

General, Visceral and Transplantation

Surgery

Molecular OncoSurgery University Hospital Heidelberg Im Neuenheimer Feld 365

69120 Heidelberg

Germany

Bernhard Hauer

Institute of Technical Biochemistry

University of Stuttgart Allmandring 31 70569 Stuttgart Germany Rüdiger Hell Heidelberg Institute of Plant Sciences University of Heidelberg Im Neuenheimer Feld 360 69120 Heidelberg Germany

Ingrid Herr General, Visceral and Transplantation Surgery Molecular OncoSurgery University Hospital Heidelberg Im Neuenheimer Feld 365 69120 Heidelberg Germany

Helke Hillebrand European Molecular Biology Laboratory (EMBL) Meyerhofstr. 1 69117 Heidelberg Germany

Ana Kitanovic
Institute for Pharmacy & Molecular
Biotechnology
University of Heidelberg
Im Neuenheimer Feld 364
69120 Heidelberg
Germany

Manfred Koegl Boehringer Ingelheim Vienna Oncology Research Dr. Boehringer Gasse 5–11 1121 Vienna Austria

Rainer König
Institute of Pharmacy and
Molecular Biotechnology
University of Heidelberg Bioquant
Im Neuenheimer Feld 267
69120 Heidelberg
Germany

Robert Kraft
Carl Ludwig Institute of Physiology
University of Leipzig
Liebigstr. 27
04113 Leipzig
Germany

Claus Kremoser PheneX Pharmaceuticals AG Im Neuenheimer Feld 515 69120 Heidelberg Germany

Stefan Legewie Institute of Molecular Biology Ackermannweg 4 55128 Mainz Germany

Wolf-Dieter Lehmann German Cancer Research Center Molecular Structure Analysis Mass Spectroscopy Im Neuenheimer Feld 280 69120 Heidelberg Germany

Susanne Lutz
Institute of Experimental and Clinical
Pharmacology and Toxicology
University of Heidelberg
Maybachstraße 14
68169 Mannheim
Germany

Nils Metzler-Nolte Chair of Inorganic Chemistry I Bioinorganic Chemistry Ruhr-University of Bochum Universitätsstr. 150 44801 Bochum Germany

Andrea Mohr
National Center for Biomedical
Engineering Science
National University of Ireland
University Road
Galway
Ireland

Ehmke Pohl
Department of Chemistry & School
of Biological and
Biomedical Sciences
Durham University
Durham, DH1 3LE
Great Britain

David B. Resnik
National Institute of Environmental
Health Science
National Institutes of Health
111 T.W. Alexander Drive
Research Triangle Park, NC 27709
USA

Andreas Schlosser

Center for Biological Systems

Analysis (ZBSA)
University of Freiburg
Habsburgerstr. 49
79104 Freiburg
Germany

Hannah Schmidt-Glenewinkel German Cancer Research Center Theoretical Systems Biology Im Neuenheimer Feld 280

69120 Heidelberg

Germany

Julia Schüler

BioMedServices Hecker-Str. 20 68199 Mannheim

Germany

Anna Sosniak

Chair of Inorganic Chemistry I

Bioinorganic Chemistry University of Bochum

Universitätsstr. 150 44801 Bochum Germany

Rolf Sprengel Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg

Germany

Ralf Tolle

Center for Molecular Biology (ZMBH)

University of Heidelberg Im Neuenheimer Feld 282

69120 Heidelberg

Germany

Peter Uetz

Delaware Biotechnology Institute

University of Delaware 15 Innovation Way Newark, DE 19711-5449

USA

Martin Vogel

Max Planck Institute of Biophysics

Max-von-Laue-Str. 3 60438 Frankfurt Germany Gary Walsh

Department of Chemical & Environmental Sciences

Plassey Park

University of Limerick

Limerick Ireland

Hans Weiher

Bonn-Rhein-Sieg University

of Applied Sciences

Department of Natural Sciences

Von-Liebig-Str. 20 53359 Rheinbach Germany

. .

Thomas Wieland

Institute of Experimental and Clinical

Pharmacology and Toxicology University of Heidelberg Maybachstraße 14 68169 Mannheim

Germany

Stefan Wiemann

German Cancer Research Center Molecular Genome Analysis Im Neuenheimer Feld 580

69120 Heidelberg

Germany

Michael Wink

Institute of Pharmacy and Molecular

Biotechnology

University of Heidelberg Im Neuenheimer Feld 364

69120 Heidelberg

Germany

Stefan Wölfl

Institute for Pharmacy & Molecular

Biotechnology

University of Heidelberg Im Neuenheimer Feld 364

69120 Heidelberg

Germany

Ralf Zwacka

National Center for Biomedical

Engineering Science

National University of Ireland

University Road

Galway Ireland

Abbreviations

1 Å =0.1 nm

aa-tRNA aminoacyl-tRNA AAV adeno-associated virus ABC ATP binding cassette Acetyl-CoA acetyl coenzyme A

AcNPV Autographa californica nuclear polyhedrosis virus

ACRS amplification-created restriction sites

ACTH adrenocorticotropic hormone

adenosine deaminase ADA

ADEPT antibody-directed enzyme pro-drug therapy

absorption, distribution, metabolism, excretion and toxicity ADME-T

ADP adenosine diphosphate adverse drug reactions **ADRs** AEC aminoethylcysteine

amplified fragment length polymorphism **AFLP**

AFM atomic force microscope

acquired immune deficiency syndrome **AIDS**

ALS amyotrophic lateral sclerosis **AMP** adenosine monophosphate

a-amino-3-hydroxyl-5-methyl-4-isoxazol-propionate **AMPA**

Ampr ampicillin resistance gene avian myeloblastosis virus **AMV** artificial neural network ANN

AO acridine orange AOX1 alcohol oxidase 1

APC anaphase promoting complex

ApoB100 apolipoprotein B100 apolipoprotein E ApoE

APP amyloid precursor protein

ARMS amplification refractory mutation system autonomously replicating sequence ARS

ATP adenosine triphosphate

att attachment site

BAC bacterial artificial chromosome

B-cell leukemia lymphoma 2 (protein protecting against bcl2

apoptosis)

German Bundesinstitut für Arzneimittel **BfArM**

und Medizinprodukte

B-Gal β -galactosidase

BHK-21 baby hamster kidney cells BLA biologics licence application basic local alignment search tool BLAST **BMP** bone morphogenetic proteins

base pairs bp

BrdU bromodeoxyuridine

An Introduction to Molecular Biotechnology, 2nd Edition.

Edited by Michael Wink

Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-32637-2

CA correspondence analysis CAD coronary artery disease

CaM-Kinase Ca²⁺/calmodulin-dependent protein kinase

cAMP cyclic AMP

cap AAV gene mediating encapsulation
CARS coherent anti-Raman scattering
CAT Committee for Advanced Therapies

CBER Center for Biologics Evaluation and Research

CC chromatin remodelling complex

CCD charge-coupled device

CDER Center for Drug Evaluation and Research

CDK cyclin-dependent kinase

cDNA copy DNA

CDR complementary determining region
CDRH Center for Devices and Radiological Health

CEO chief executive officer
CFP cyan fluorescent protein

CFTR cystic fibrosis transmembrane regulator
CGAP cancer genome anatomy project
CGH comparative genome hybridization

CHMP Committee for Medicinal Products for Human Use

CHO Chinese hamster ovary
CIP calf intestinal phosphatase
CML chronic myeloic leukemia

CMN Corynebacterium-Mycobacterium-Nocardia group

CMV cauliflower mosaic virus
CMV Cytomegalovirus
CNS central nervous system

COMP Committee on Orphan Medicinal Products

COS-1 simian cell line, CV-1, transformed by origin-defective

mutant of SV40

cpDNA chloroplast DNA CPMV cowpea mosaic virus

cPPT-sequence central polypurine tract – regulatory element in lentiviral

vectors that facilitates double strand synthesis and the

nuclear import of the pre-integration complex

CSF colony-stimulating factor
CSO contract service organisation
CTAB cetyltrimethylammonium bromide
CVM Center for Veterinary Medicine

CVMP Committee for Medicinal Products for Veterinary Use

2D two-dimensional

Da Dalton
DAG diacylglycerol

DAPI 4,6-diamidino-2-phenylindole dATP deoxyadenosine triphosphate

DBD DNA-binding domain
DAC divide-and-conquer strategy

DD differential display
DDBJ DNA Data Bank of Japan
ddNTP dideoxynucleotide triphosphate

DEAE diethylaminoethyl denaturing HPLC

DIC differential interference contrast
DIP Database of Interacting Proteins

DNA deoxyribonucleic acid DNAse deoxyribonuclease dNTP deoxynucleoside triphosphate

Dox doxycycline

ds diabodies disulfide-stabilized diabodies dsDNA double-stranded DNA

dsFv-fragment disulfide-stabilized Fv fragment

dsRNA double-stranded RNA
DtxR diphtheria toxin repressor

Ebola-Z envelope protein of the Ebola-Zaire virus, which has

a high affinity to lung epithelial cells

EC₅₀ effective concentration, the dose or concentration

that produces a 50% effect in the test population within

a specified time

ECD electron capture dissociation EDTA ethylenediaminetetraacetic acid

ee enantiomeric excess
EF2 elongation factor 2
EF-Tu elongation factor Tu
EGF epidermal growth factor

EGFP enhanced green fluorescent protein

EGTA ethyleneglycol-bis-(2-aminoethyl)-tetraacetic acid

EIAV equine infectious anaemia virus ELISA enzyme-linked immunosorbent assay

EM electron microscope

EMA European Medicines Agency

EMBL European Molecular Biology Laboratory

EMCV Encephalomyocarditis virus EMSA electrophoretic mobility shift assay

EMEA European Agency for the Evaluation of Medicinal Products

ENU N-ethyl-N-nitrosourea

env retroviral gene coding for viral envelope proteins

EPO European Patent Office

EPR effect enhanced permeability and retention effect

EPC European Patent Convention
ER endoplasmic reticulum
ESI electrospray ionization
EST expressed sequence tags
ES cells embryonic stem cells
EtBr ethidium bromide
Fab-fragment antigen binding fragment

FACS fluorescence-activated cell sorter
FAD flavin adenine dinucleotide
FBA flux balance analysis

FCS fluorescence correlation spectroscopy
FDA Food and Drug Administration

FFL feed-forward loop FGF fibroblast growth factor

FISH fluorescence in situ hybridization FIV feline immunodeficiency virus

FKBP FK506-binding protein

FLIM fluorescence lifetime imaging microscopy

FLIPR fluorescent imaging plate reader

FMN flavin mononucleotide

FPLC fast performance liquid chromatography
FRAP fluorescence recovery after photobleaching
FRET fluorescence resonance energy transfer

FT-ICR Fourier transformation cyclotron resonance, method in

mass spectroscopy

FtsZ prokaryotic cell division protein

Fur ferric uptake regulator Fv-fragment variable fragment

FWHM full width at half maximum GABA gamma aminobutyric acid

Gag retroviral gene coding for structural proteins

Gal galactose

GAP GTPase-activating protein

GAPDH glyceraldehyde 3-phosphate-dehydrogenase

Gb Gigabases

GCC German cDNA consortium
GCG genetics computer group
GCP good clinical practice

 ΔG_d free enthalpy

GDH glutamate dehydrogenase
GDP guanosine diphosphate
GEF guanine exchange factor
GEO gene expression omnibus
GFP green fluorescence protein

GM-CSF granulocyte/macrophage colony-stimulating factor

GO gene ontology GOI gene of interest

GPCR G-protein-coupled receptor

GPI anchor glycosylphosphatidylinositol anchor

GRAS generally regarded as safe
GST glutathione-S-transferase
GTC guanidinium isothiocyanate
GTP guanosine triphosphate

GUS glucuronidase

GMO genetically modified organism

HA hemagglutinin

HCM hypertrophic cardiomyopathy

HCV Hepatitis C virus

HEK human embryonic kidney

HeLa cells human cancer cell line (isolated from donor Helene

Larsen)

HER 2 human epidermal growth factor 2

HGH human growth hormone

HIC hydrophobic interaction chromatography

His₆ hexahistidine tag

HIV human immunodeficiency virus, a retrovirus

HIV 1 human immunodeficiency virus 1

HLA human leukocyte antigen hnRNA heterogeneous nuclear RNA

HPLC high performance liquid chromatography

HPT hygromycin phosphotransferase

HPV human papilloma virus HSP high-scoring segment pairs

HSP heat shock protein
HSV-1 Herpes simplex virus
HTS high-throughput analysis
HUGO Human Genome Organisation

HV Herpes virus

IAS international accounting standard

ICDH isocitric dehydrogenase

ICH International Conference on Harmonization of Technical

Requirements for the Registration of Pharmaceuticals

for Human Use

ICL isocitric lyase

ICP-MS inductively coupled-plasma mass spectrometry ICR-MS ion cyclotron resonance mass spectrometer

IDA iminodiacetic acid
IEF isoelectric focusing
Ig immunoglobulin
IHF integration host factor

IMAC immobilized metal affinity chromatography

IND-Status investigational new drug status IP₃ inositol-1,4,5-triphosphate IPO initial public offering IPTG isopropyl-b-D-thiogalactoside

IR inverted repeats
IR investor relations

IRES internal ribosome entry site

ISAAA International Service for the Acquisition

of Agri-Biotech Applications

ISH in situ hybridization

ISSR inter simple sequence repeats
ITC isothermal titration calorimetry

ITR inverse terminal repeats – regulatory elements

in adenoviruses and AAV

i.v. intravenous

k_a second order velocity constant in bimolecular association

Kan^r kanamycin resistance gene K_{av} specific distribution coefficient

kb Kilobases

 k_d first order velocity constant in unimolecular dissociation $K_d = k_d/k_a$ velocity constant in dissociation/ K_a in association

kDa Kilodalton

KDEL amino acid sequence for proteins remaining in the ER

KDR receptor kinase insert domain containing receptor KEGG Kyoto Encyclopedia of Genes and Genomes

Lac lactose

LASER Light Amplification by Stimulated Emission of Radiation

LB left border

LB Luria-Bertani medium
LCR ligation chain reaction
LDL low-density-lipoprotein

LIMS laboratory information management systems

LINE long interspersed elements
LSC Laser scanning-cytometer
LTQ linear trap quadrupole

LTQ-FT-ICR linear trap quadrupole-Fourrier transformation-ion

cyclotron resonance

LTR long terminal repeats; regulatory elements in retroviruses

LUMIER LUMInescence-based mammalian intERactome

MAC mammalian artificial chromosome mAChR muscarinic acetylcholine receptor

MAGE-ML microarray gene expression markup language MALDI matrix-assisted laser desorption/ionization

6-MAM 6-monoacetylmorphine

MAP microtubule-associated protein
MAP mitosis-activating protein

Mb Megabases

MBP maltose-binding protein MCS multiple cloning site

M-CSF macrophage colony-stimulating factor
MDR protein multiple drug resistance protein
MDS multidimensional scaling
MGC mammalian gene collection
MHC major histocompatibility complex

MIAME minimum information about a microarray experiment

miRNA microRNA

MIT Massachusetts Institute of Technology MoMLV moloney murine leukemia virus

Mowse molecular weight search
MPF M-phase promotion factor

MPSS massively parallel signature screening Mreb/Mbl proteins of prokaryotic cytoskeleton

mRNA messenger RNA

MRSA methicillin-resistant S. aureus

MS mass spectrometry
MSG monosodium glutamate
MS-PCR mutationally separated PCR
MTA material transfer agreement

mtDNA mitochondrial DNA

MULVR Moloney Murine Leukemia Virus

MW molecular weight

μF μFarad

nAChR nicotinic acetylcholine receptor
NAD nicotinamide adenine dinucleotide
NAPPA nucleic acid programmable protein array
NCBI National Center for Biotechnology Information

NDA new drug application
NDP nucleoside diphosphate
NDPK nucleoside diphosphates kinase

NFjB nuclear factor jB

NIH National Institutes of Health

NK cell natural killer cell

NMDA-receptor N-methyl-D-aspartate-receptor
NMR nuclear magnetic resonance
NPTII neomycin phosphotransferase II
NSAID non-steroidal anti-inflammatory drug

NTA nitrilotriacetic acid NTP nucleoside triphosphate

OD optical density

ODE ordinary differential equation
ODHC 2-oxoglutarate dehydrogenase

OMIM online Mendelian inheritance in man

ORF open reading frame ori origin of replication

OXA complex membrane translocator in mitochondria
PAC P1-derived artificial chromosome
PAGE polyacrylamide-gel electrophoresis
PAZ-domain PCA principal component analysis
PCR polymerase chain reaction

PDB protein data bank
PEG polyethylene glycol

PFAM protein families database of alignments and HMMs

PFG pulsed-field gel electrophoresis

ΡI propidium iodide

PIR protein information resource

piRNA piwi-interacting RNA **PKA** protein kinase A **PKC** protein kinase C PK data pharmacokinetic data Plos Public Library of Science **PMSF** phenylmethylsulfonyl fluoride

PNA peptide nucleic acid **PNGaseF** peptide N-glycosidase F **PNK** T4-polynucleotide kinase

pol retroviral gene coding for reverse transcriptase

and integrase

 P_{PH} polyhedrin promoter PR **Public Relations**

psi retroviral packaging signal **PTGS** posttranscriptional gene silencing PTI pancreatic trypsin inhibitor

Q-FT-ICR Q-Fourier transform ion cyclotron resonance

Q-TOF Quadrupole-Time-of-Flight

RACE rapid amplification of cDNA ends Ran protein involved in nuclear import

RAPD random amplification of polymorphic DNA

RAP-PCR RNA arbitrary primed PCR

right border RB

RBD RNA-binding domain Rb-gene retinoblastoma gene RBS ribosome binding site

RDA representative difference analysis RdRp RNA-dependent RNA polymerase AAV gene, mediating replication rep RES reticuloendothelial system

RFLP restriction fragment length polymorphism

Rf-value retention factor

RGS regulator of G-protein signaling RISC RNA-induced silencing complex

RNA ribonucleic acid **RNAi** RNA interference RNP ribonucleoprotein revolutions per minute rpm

regulatory element in a lentiviral vector, enhancing RRE

the nuclear export of viral RNA

rRNA ribosomal RNA

RSV respiratory syncytial virus

RSV promoter of the Rous sarcoma virus

RT reverse transcriptase

rtTA tetracyclin-sensitive regulatory unit SAGE Serial Analysis of Gene Expression

SALM spectrally assigned localization microscopy

SAM S-adenosylmethionine sc diabodies single-chain diabodies single-chain Fab-fragment scFab

scFv/sFv fragment single-chain Fv fragment

SCID severe combined immunodeficiency SCOP structural classification of proteins

SDS sodium dodecyl sulfate SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electophoresis SELEX systematic evolution of ligand by exponential enrichment

SEM scanning electron microscope
Sf cells Spodoptera frugiperda cells
SFM scanning force microscope
SFV Semliki-Forest virus

SH1 Src-homology domain 1=kinase domain

SH2 Src-homology domain 2
SH3 Src-homology domain 3
SHG second harmonic generation

SIM single input

SIN self-inactivating lentiviral vectors, due to a 3' LTR mutation

SINE scattered or short interspersed elements

siRNA small interfering RNA

SIV simian immunodeficiency virus

SNARE proteins SNAP-receptor proteins

SNP single nucleotide polymorphism

snRNA small nuclear RNA

snRNP small nuclear ribonucleoprotein

SOP stock option program
SP function sum-of-pairs function
SPA scintillation proximity assay

SPDM spectral precision distance microscopy

SPF S-phase promotion factor
SRP signal recognition particle
SSB single strand binding proteins

SSCP single-strand comformation polymorphism

ssDNA single-stranded DNA

SSH suppressive subtractive hybridization

SssI methylase methylase from *Spiroplasma* ssRNA single-stranded RNA STED stimulated emission depletion

STEM scanning transmission electron microscope

stRNA small temporal RNA
STS sequence-tagged site
SV40 Simian-virus-type 40
TBP TATA-binding protein
T_C cytotoxic T-cells
Tc tetracycline
T-DNA transfer DNA

TEM transmission electron-microscope

 $\begin{array}{ccc} \text{TEV} & & \text{Tobacco Etch Virus} \\ T_{\text{H}} & & \text{T helper cell} \end{array}$

THG third harmonic generation

TIGR The Institute for Genome Research
TIM translocase of inner membrane
T_m melting temperature of dsDNA

TNF tumor necrosis factor

TOF time of flight

TOM translocase of outer membrane t-PA tissue plasminogen activator TRE tetracycline-responsive element

TRIPs Trade-Related Aspects of Intellectual Property Rights

tRNA transfer RNA
Trp tryptophan

t-SNARE protein in target membrane to which vSNARE binds

TSS transformation and storage solution

tTA tetracycline-controlled transactivator

TY transposon from yeast

UPOV Union for the Protection of New Varieties of Plants

US-GAAP US generally accepted accounting principle

 $\begin{array}{lll} \text{UV} & \text{ultraviolet} \\ V_0 & \text{empty volume} \\ \text{VC} & \text{venture capital} \\ V_e & \text{elution volume} \end{array}$

VEGF vascular endothelial growth factor

VIP vasoactive peptide

VNTR variable number tandem repeats

v-SNARE protein in vesicular membrane, binding to t-SNARE VSV-G envelope protein of vesicular stomatitis virus, great affinity

to a wide range of cells

V_t total volume

wNAPPA modified nucleic acid programmable protein array
WPRE woodchuck hepatitis virus posttranscriptional

regulatory element

X-Gal 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside

YAC yeast artificial chromosome
YEp yeast episomal plasmid
YFP yellow fluorescence protein
YIp yeast-integrating plasmid
YRp yeast-replicating plasmid

Yth yeast two-hybrid