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FOREWORD

This volume presents an overview of some important topics in Condensed Matter
Physics. The selection of papers was presented at the Symposium on ‘‘Current
« Trends in Condensed Matter Physics’’, held in Brasilia on January 23—27, 1989.
The Symposium marked the inauguration of the International Centre of Condensed
Matter Physics (ICCMP) of the University of Brasilia. The ICCMP is an institute
for theoretical research, appropriately set up to hold regular topical conferences,
workshops and winter schools on recent advances in Condensed Matter Physics.

The book begins with a review on density functional theory, deliveredcby Sham.
This paper is followed by a report on recent advances in the theory of freezing of
Coulomb liquids by Tosi. An ab initio LCAO method for physisorption and
chemisorption at metal surfaces is then presented by Flores, Criado-Sancho,
Garcia-Vidal, and Martin- Rodero. In the next paper, Foglio discusses the applica-
tion of perturbation methods for the Anderson model in intermediate valence
compounds. A related paper on the Kondo lattice by Continentino, Japiassu
and Troper initiates the contributions on superconductivity. This work is followed
by the paper on electron-electron interactions in copper-oxide planes of high-T,
superconductors by Mahan. Chao, Wei, and Bartkowiak present a two-band
model for hole dynamics in these materials, and Rojo, Balseiro, Avignon, and
Alascio describe an extended Hubbard model approach for highly correlated
copper oxides. :

Subsequently, Salinas presents a Cayley tree model for systems with competitive
interactions and spin glasses, while de Aguiar, Bosco, Martinez, and Goulart Rosa
describe the Cayley tree one-state Potts model. Finally Stinchcombe ends up
this volurne with a review on scaling theory application for the dynamics of fractals,
disordered systems, and quasicrystals.

We wish to acknowledge the important financial support we received from the
Brazilian agencies FINEP, CNPq, CAPES, and from the Office of External Affairs
of ICTP (Trieste). The assistance we had from Ms. M. Vittoria von Bilow and
Fontayny Kieber from Brasilia, and Dr. K. K. Phua and Ms. Kim Tan from World
Scientific, for the preparation of this volume, is also greatly acknowledged.

Alvaro Ferraz
Fernando A. Oliveira
Roberto Osério
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Density Functional Theory: Past and Present

L.J. Sham
Department of Physics, B-019
University of California, San Diego
La Jolla, California 92093

Abstract

After a brief review of the fundamentals of the density functional theory and
its wide-ranging applications, recent advances are discussed. These include the
problems of the low-lying excited states, such as the band-gap in insulators and
semiconductors and the Fermi surface in conductors, and the extension of the density

functional theory to superconductors and to finite magnetic fields.

I. INTRODUCTION

It has been twenty-five years since the paper of Hohenberg and Kohn! which
founded the field of the density functional theory. In that period, through the effort
of many people in applying the theory to a wide range of systems, from atoms
and molecules to solids and nuclear matter, the density functional theory has been
established as a useful method for treating the many-body effects for the ground state
of an inhomogeneous system. Yet, the density functional theory remains today a
vibrant field of research. Applications are being tested for ever more exotic systems,
including the copper oxides and the theory is being extended in several directions.
Thus, my talk will comprise of a quick review of the established part of the theory

and a discussion of the current research. Th~ outline is as follows:



1. Fundamentals of the density functional theory.
2. A cursory survey of its many applications.

. The band gap problem.

(=]

The Fermi surface problem.

(SRS

The inhomogeneons superconductor.

High magnetic field.

¥ P

What remains to be done.

II. WHAT IS DENSITY FUNCTIONAL THEORY?

The one-line answer is that it is many body quantum mechanics for everybody.
By expressing the ground state energy as a functional of the density, the theory
reduces the many-body problem to an equivalent one-particle theory with all the
many-body effects collected in an effective potential. In this form, simple and effec- -
tive approximation for including the many-body effects can be devised.

A many-electron system has the Hamiltonian
H=T+V+U, (1)

where T is the kinetic energy of the electrons, V is the potential energy due to the
external potential v(r), and U is the potential energy due to the Coulomb interaction
between electrons. Consider the class of many-electron systems which have the same
mass and Coulomb interaction between particles but which have different potentials
v(r) due to the nuclei. In principle, for this class of systems, the specification of an
external potential v(r) determines all the properties of a system, in particular the
ground state energy and the ground state density distribution n(r). We may say
that the ground state density n(r) is a functional of the potential »(r). Ilohenberg
and Kohn's theorem proves that the converse is also true, namely that the potential
is, apart from an arbitrary constant, uniquely determined by the density n(r). The
proof, by reductio ad absurdum, is simple, showing that no two potentials differing

by more than a constant can correspond to the same density distribution.



Cllearly, the theorem can be applied to more than the class of electron systems.
[t could be for a class of fermions or of bosons. In the way the theorem was stated
above, clearly the mathematical niceties of the Banach spaces of n(r) and of v(r) are
glossed over. A constructive procedure which avoids such problems to some extent
was given by Levy.?

As a result of the Hohenberg-Kohn theorem, the ground state energy can be put

in the form:
E = /drn(r)v(r) + Fln(r)) (2)

where the first term is the ground state expectation of 1 and Fln] is the expectation
value of T'+ 7. 'There is a variational theorem for the energy which says that for a
given potential v(7), the correct density put in the expression (2) yields the lowest
energy. The functional derivative of Eq. (2),

&
— 4 v =y, (3
on

where u is the chemical potential, then in principle determines the density distribu
tion. This forms the basis of the gradient expansion of the density, the leading term
being the Thomas-Fermi® approxiruation including the exchange-correlation effects

Kohn and Sham® reduced the variational equation (3) to an eqnivalent one
electron Schrédinger equation and, thus, rendered the solution for the density prac
tical without the well-known shortcomings of the Thomas-I'ermi approximation.
Consider first a class of noninteracting electrons (i.e. with {7 = ). The ground
state energy can be written in the same form as Fq. (2) with F{n] replaced by
T,[n]. which is the ground state kinelic energy of the non-interacting system with
the density distribution n(r). The variational equation becomes

5T, .
5y TV=8 (4)

whose solution is the same as that of the one-clectron Schrodinger equation:

1



yielding the density
n(r) = Y00k - )51 (6)

The point of the exercise is that, even though we might not know the explicit form®
of the functional 7,[r], the solution of the variational equation (4) is equivalent to
solving a one-particle Schrodinger equation.

For the class of interacting electron systems, with U reinstated, we write
1
Fln] =T,[n] + 3 /dr/dr'n(r)u(r —r')n(r') + E[n]. )]

The first term is not the kinetic energy of the interacting system. The second term
is the electrostatic energy due to the electron charge distribution, where u(r) is
the Coulomb interaction. The remainder may be termed the exchange-correlation
energy, following the practice for the homogeneous electron gas. Equation (3) now

has the same form as Eq. (4), except the potential v(r) is replaced by

very(r) = v(r) + [dr'ulr = 1) + vedlr). (8)

The second term on the right is the electrostatic potential due to the electronic

charge distribution. The third term is

) = e, ‘ (©)

which may be viewed as the exchange-correlation potential. In this manner, the
many-body problem is reduced to the solution of the one-particle Schrodinger equa-
tion (5) with the effective potential v.ss in place of v.

The problem now becomes the construction of the exchange-correlation energy
functional F,.n]. A simple approximation in the spirit of the Thomas-Fermi ap-

proximation is the local density approximation(LDA)*:

E,. = / dreo(n(r))n(r), (10)



where €,.(n) is the exchange-correlation energy per electron of the homogeneous gas
at the density n. The exchange-correlation potential v, is then given by p..(n), the
exchange-correlation part of the chemical potential of the homogeneous electron gas
at the local density n.

For finite systems and for magnetic systems, the spin degrees of freedom are im-
portant. The density functional theory is easily extended to the two spin-component
density* and the corresponding LDA is now commonly known as local spin density

approximation (LSD).

IIT1. APPLICATIONS

There have been literally thousands of papers utilizing the density functional
theory, particularly the LDA. Even the review articles and books are too numerous
to quote here.®” The following is a list of systems and their prominent properties

which have been covered:
1. Atoms: Total energy, ionization potential and affinity.

2. Molecules: Stability of diatomic atoms. Be; is a particular example where
Hartree-Fock predicted no binding, where an early configuration interaction
calculation predicted weak binding but where LDA predicted binding®® though

too strong compared with the subsequent experiment.

3. Bulk solids: Cohesive energy, crystal structure, equilibrium lattice constant,

elastic constants, phonon frequencies, Fermi surface, magnetization.

4. Point defects in solids: Determination of the atomic arrangement by compar-

ison of total energy.
5. Surfaces: Structure and adsorption.

6. Space charge layers in semiconductors: Subband structure.



7. Nuclear matter: Density oscillations in a linite nuclens™ and swrface energy.t!
C o - 2
8. Blectron-hole drop: Surface.!

Here are a couple of opinions of the practitioners in the field who have found the

theory uscful:

o ln a Letter on “Metal-metal bonding in Cr-Cr and Mo-Mo dimers™ by the
Northwestern group' which is an important center for electronic band struc-
ture studies, Delley et al. gave a subtitle “Another success of local spin-density
theory™ and said, “The local density functional theory is now the most widely
used theoretical approach for determining the electronic structure of materials.
[ts great utility derives from the accurate experimental predictions obtained in
systeutatic and extensive theoretical investigations of the electronic structure

and properties of molecules and a wide variety of bulk solids and surfaces.”

e Parr' in a review from the viewpoint of a theoretical chemist said, “Den-
sity functional theory will contribute substantially to the ultimate quantum-

theoretical elucidation of chemistry.”

To balance the favorable remarks, let me quote a couple of contrary opinions:

15 «

e Kryachko: .. there still seems to be a misguided belief that a one-particle

density can determine the exact N-body ground state.”

o Lieb:1® “ _ the universal functional is very complicated and essentially uncom-

putable.”

In general, the LDA is adequate for the ground state properties, including
changes due to variations of the atomic configuration or of the electron numbers, but
the eigen-energies of Eq. (5) cannot always adequately represent the excited state
properties. Thus, the ionization potential and the affinity energy calculated as total

energy differences of N and N +1 electron states are well given by LDA (or LSD) but



TABLE 1. Si “ground state” properties

Harman Gedbel

Bachelet Nielsen = Weber Segall

Exp Yin, Cohen et al. Martin Hamann Andersen
ap 5.431 A 0.5% 2% 1% 1% -0.5%
B 0.992 Mbar 1% 3% -6% -12% 1%
aB/OP 415 -20% 1% 1%
Eeon 4.63 eV 4% 5% 4%
C1;1-Ciz  1.025 Mbar 5% -5%
Cua 0.801 Mbar — 6%
wrro(l) 15.53 THz 3% -0.3%
wro(X) 12.32 -3%
wro(X) 13.90 -3%
wra(X)  4.49 -3%
yro(l')  0.98 -8%
Lo(X)  1.50 -13%
yro(X) 0.9 0
yra(X) -14 -1%

not always the case as the eigenvalues of the density functional Schrédinger equation
(5) for the N particle system. Bulk solid semiconductors provide a good example.
Table I shows the error of LDA calculations!’=?! for a list of “ground state proper-
ties” for silicon. The agreement appears to be excellent on the whole, considering
that the only input is the electron gas p..(n), the atomic number and the crystal
lattice. The most striking example is shown by Fig. 1, the first-principles theory!” of
the total energies of various crystal structures of silicon under pressure. The theory
not only was able to distinguish correctly the small difference between the diamond

structure and the hexagonal diamond structure at room pressure but it predicted the
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Figure 1: Total energy curves of various structures of silicon, taken from Iig. 5 of
Ref. 17 by Yin and Cohen with permission of authors

transition under pressure to the §-tin structure, which was subsequently confirmed
by experiment.

Against this background of success for the semiconductors, the uniform lack of
agreement between LDA and experiment on the band gaps, as shown by Table I, is
disturbing. Whether this is due to the inadequacy of the local density approximation
(10) or due to the fact that the eigen-energies of the density function equation (5)
do not represent the energies of the excited states is the band-gap problem which

we shall address in the next section.

IV. THE BAND GAP PROBLEM

To solve the problem posed above, we need (1) a theory of the exchange-
correlation potential beyond the LDA, (2) a precise theoretical understanding of
the energy gap from the many-electron view-point and its relation to the density
functional eigenvalues, and (3) numerical evaluations of the improvement over LDA
and the band gaps from the exact definition for specific systems. All three steps

have been taken and we believe we have a measure of understanding of the problem,



TABLE I1. Energy gaps in semiconductors (Refs. 17, 18)

Theory (eV) Expt. Diff.

Si

I — X,(0.85) 0.48 117 0.69

e — s 2.54 2.74 0.20
Ge

I — L 0.47 0.74  -0.27

I — I, 0.73 089 -0.16
C

— X,(.85)

L 6.3 73 -1.0
GaAs

r,-r. 0.71 1.5 -0.79

r, - X, 1.48 1.8 -0.32
GaP

r,-r. 1.87 233 -0.46

TiO, 1.5 3
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although an interesting controversy over the relative impertance of the improvement
over LDA and the density functional eigen-values as approximation to the excited
states remains.

LDA approximates the exchange-correlation effects by the corresponding terms
of the homogeneous electron gas at the local density. Even though LDA has shown
in practice to be good for a wide range of systems, one can imagine circumstances
where it will fail. An example is the very localized and highly correlated f elec-
trons in the heavy-electron metals.?? Hybridization of the f-level with the d,p bands
yields an f-band with a width of about 0.1 ¢V in LDA, which is about an order
of magnitude larger than experiment. Yet, LDA?? gives an excellent Fermi surface
for the heavy electron metal CeSnz. How to construct an exchange-correlation func-
tional appropriate for the highly correlated electrons is an important and interesting
challenge.

Improvement of LDA so far has involved either gradient corrections or special
constructs which do not work universally well. A formal expression for E,.[n] has
been given® in terms of the field theoretic perturbation theory using the Green's
function constructed from the density function equation (5) as the starting point.
The exchange-correlation potential v,.(r) is then given by an integral equation in
terms of the exchange-correlation part of the self-energy. The solution of the integral
equation is shown to have the correct asymptotic behavior for restricted systems such
as atoms or metal surfaces. The potential can be obtained numerically beyond LDA
once an approximation for the self-energy is decided, such as the random phase
approximation (RPA). The LDA expression can also be derived from the integral
equation. What is lacking is a simple approximation for the solution which combines
the virtue of the LDA in the bulk region and which preserves the asymptotic behavior
in the low density region. Since the most important error of LDA comes from
the approximation to the exchange, a possible approach might be to separate the

exchange from the correlation term. It must be pointed out that, in the context of



the density functional theory, the separation 1s a matter of some controversy.

Do the eigenvalues ¢, from the effective one particle equation (5) with the exact
exchange-correlation potential v, represent the energies of the excited states? The
answer is no, in general. The highest occupied density functional eigen-energy does
represent the chemical potential in the conductor case and the valence band edge
in the insulator or semiconductor case. T'he band gap of an insulator or a semicon-
ductor can be defined precisely in terms of the ground state energy as a function
En of the number of particles M. If the insulating ground state has N particles,
the conduction band edge is the change of the total ground state energy when an
electron is added and the valence band edge is given by the change when an electron

is removed:

E. = Enyi—En (11)

E, = En—FEn_\. (12)
The band gap is naturally the difference:
E,=E - E,. (13)

It is straightforward to show?® from the definition of £, and with the help of
the variational theorem that the valence band edge is given by the highest occupied

density functional eigen-energy:
Eu =EN-. (H)

Now, the Hohenberg-Kohn theorem is implicitly for a fixed number of electrons, M.
Equation (5) and v, are implicitly defined as functions of M. Since M = N gives the
insulating ground state, we will argue below?*2¢ that when an electron is removed,
the highest occupied state is not changed much [only to O(1/N)] and vo(N — 1) is
the same as v, (/N) but that when an electron is added across the gap, the (N +1)th

state is very different and there is a discontinuity in v, as N is changed to N + 1:

z"rc("V + 1) = Urc(/,v) + Arcw (15)
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where A_. is independent of position. It follows that the difference between the true

gap, Eq. (13) and the density functional gap given by
Eg =EN41 —EN, (16)

is just the potential discontinuity, A,..

There are a number of arguments for the existence of the discontinuity of v,
across N. The first is that, from the chemical potential argument applied to Eq. (5)
for the non-interacting and interacting systems respectively, §T,/6n has a disconti-
nuity of ¢, and 6F/én has a discontinuity of E; across N. It would be the purest
coincidence if the two functional derivatives have the same discontinuity. The sec-
ond argument is that the discontinuity of v, can be expressed in terms of the
self-energy.?® The third argument, the strongest, is the explicit demonstration for a
number of systems.

Consider the case of a proton with 0,1,2 electrons. The energy for introducing
the first electron is €¢; = 1Ryd and the energy for added a second electron with
the opposite spin is €, + U, when the additional energy U is due to the Coulomb
interaction between the two electrons. Thus, the density function gap is zero and
the true gap and the v, discontinuity is U. This example may also be regarded
as the atomic limit of the Hubbard model. Another example is a two-plane wave
model in the Hartree-Fock approximation?® and beyond.?”

A more persuasive demonstration of the importance of the discontinuity is the
calculation of the discontinuity for a number of semiconductors in RPA.?® RPA for
the Green’s function using the LDA basis set?® has been shown to give very good
band structures for a number of semiconductors, including the band gaps. Godby
et al.?® calculated the density functional potential for a number of semiconductors,
diamond, Si, GaAs, and AlAs, from the self-energy in RPA by iteration from the
LDA. The Green’s function in RPA is then calculated using the density functional
single particle states and is used to determine the quasi-particle energies. The

calculated band gaps are in very good agreement with experiment, as shown in



