"W WILEY WILEY PROFESSIONAL COMPUTING

ADVANCED

WIN32

'PROGRAMMING

Martin Heller

Advanced Win32
Programming

Martin Heller

with Foreword
by

Paul Maritz, Microsoft Corporation

John Wiley & Sons, Inc.

New York Chichester Brisbane Toronto Singapore

For Eden

This text is printed on acid-free paper.

Designations used by companies to distinguish their products
are often claimed as trademarks. In all instances where John
Wiley & Sons, Inc. is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete
information regarding trademarks and registration.

This publication is designed to provide accurate and authorita-
tive information in regard to the subject matter covered. It is
sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional service. If
legal advice or other expert assistance is required, the services
of a competent professional person should be sought. FROM A
DECLARATION OF PRINCIPLES JOINTLY ADOPTED BY A
COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A
COMMITTEE OF PUBLISHERS.

Copyright © 1993 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that
permitted by Section 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is
unlawful. Requests for permission or further information should
be addressed to the Permissions Department, John Wiley &
Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Heller, Martin
Advanced Win32 Programming / Martin Heller.
p. cm.
Includes index.
ISBN 0-471-59245-5 (book/disk set)
1. Application software. 2. Microsoft Win32 API. I. Title.
QA76.76.A65H45 1993
005.4'3—dc20 93-550
CIP

Printed in the United States of America

10987654321

About the Author

Martin Heller develops software, writes, and consults in Andover, MA. You can contact
him on BIX and MCI Mail asmheller, on CompuServe as 74000, 2447, and by mail
care of John Wiley & Sons. Dr. Heller is the author of Advanced Windows Programming,
also published by Wiley, as well as Advanced Win32 Programming.

Martin is a senior contributing editor and regular columnist for WINDOWS Magazine
and the author of half a dozen PC software packages. He has been programming for
Windows since early in the Windows 1.0 alpha test period. He has baccalaureate
degrees in physics and music from Haverford College as well as Sc.M. and Ph.D. degrees
in experimental high-energy physics from Brown University.

Dr. Heller has worked as an accelerator physicist, an energy systems analyst, a
computer systems architect, a company division manager, and a consultant. Through-
out his career he has used computers as a means to an end, much as a cabinet maker
uses hand and power tools.

Martin wrote his first program for a drum-based computer in machine language in
the early 1960s. (No, not assembly language, machine language.) The following year
he taught himself Fortran II, and wrote mathematical programs in that language
throughout high school.

In graduate school Martin wrote hundreds of programs in MACRO-9 assembler for
a DEC PDP-9 computer, and hundreds more Fortran IV, APL, and PL/1 programs for an
IBM 360/67. For his Ph.D. thesis he analyzed 500,000 frames of bubble chamber film
taken at Argonne National Laboratory and helped take other data at Fermi National
Accelerator Laboratory.

At New England Nuclear Corporation (currently a DuPont subsidiary) Dr. Heller
developed an automatic computer data-acquisition and control system for an isotope-
production cyclotron using Fortran IV+ and MACRO-11 on a PDP-11, with additional
embedded 6802-based controllers. When the company acquired a VAX, Martin wrote
one of the earliest smart terminal programs, in assembly language for the PDP-11
running RSX-11M.

At Physical Sciences Inc. (PSD Martin developed a steady-state model of an ex-
perimental fuel cell power plant (under contract to the U.S. Department of Energy) in
BASIC on a TRS-80 Model 3, and designed more advanced plants in BASIC on an early
IBM PC. He developed a DOT-compliant crash sled data analysis program and a brake-
testing data-acquisition, control, and analysis system in compiled BASIC for General
Motors; he also developed the suite of programs that allowed General Motors to
successfully defend itself against a government action over X-car braking systems.

iv About the Author

Martin designed and developed MetalSelector, a materials selection and materials
properties database program, under contract to the American Society for Metals
(currently called ASM International), still in compiled BASIC. He designed EnPlot for the
Society’s graphing needs, intending the program for Windows 1.0, and put together a
team of programmers to write it in C. When Windows 1.0 started slipping its schedule,
Dr. Heller and his team implemented EnPlot for DOS instead of Windows.

Martin responded to the ongoing needs of the materials properties community by
designing and implementing MetSel2 (at PSD and later MatDB, in C for DOS, and EnPlot
2.0 for Windows (in both cases as an independent consultant). EnPlot is currently at
revision 3.0 (and counting), and runs under Windows 3.0 and above.

While still at PSI, Martin designed two statistical subroutine libraries in Fortran for
John Wiley & Sons. Statlib.tsf was a time-series and forecasting library, and Statlib.gl was
a device-independent graphing library built on the GKS graphics standard. Both
packages are now out of print.

As a consultant, Martin has worked for companies of all sizes to develop, design,
improve, and/or debug Windows applications, and has performed strategic business
consulting for large multinational corporations. His latest solely developed program is
Room Planner, a meeting and conference layout system for the hospitality industry.

Foreword

It seems a software developer’s work is never done. Develop an application for one
desktop operating system and—you hope—users will want to run it on other systems,
too. Port that application to another system and—if you’re lucky—users will want to
run it not just on the desktop, but also on the increasingly diverse range of micro-
processor-based consumer electronics products and computers, including office equip-
ment, handheld devices, portable computers, and very powerful server machines that
are mainframes in all but name. Since this growing class of devices can address the
computing needs of a widening set of applications, users will be looking to developers
to supply not only personal productivity products, but also line-of-business or mission-
critical applications.

How many different programming interfaces, operating systems, and form factors
will developers have to address as computing options proliferate—and what will be the
costs of doing so? The most useful approach for developers is one that lets them preserve
and leverage their existing investments of time, money, and code as they address these
broad choices. Given the very large base of investment in the industry in and around the
Microsoft™ Windows™ operating system and Windows-based products, it makes sense
for Windows to offer a cost-effective approach to development, helping to ensure that
developers and users of the Windows operating system can easily gain access to new
devices and address new applications by building on their existing investment and
support structures.

But that's easier said than done. It is very difficult to address today’s multiple devel-
opment opportunities with a single underlying implementation of an operating system.
The techniques and approaches one uses in a portable device, where low memory and
power usage is paramount, are very different from the techniques and approaches that
one needs in a high-end workstation or server, where security, capacity, and reliability
are paramount. These challenges need to be overcome in order to gain the significant
benefits of preserving a common user interface and common programming interfaces.

To address this challenge, Microsoft has been expanding Windows from its origin as
a single product into a family of products where each family member has a specialized
internal implementation but complements the others.

viii Foreword

Our strategy for Windows is to develop a single coherent operating system family
that is completely scalable. It spans computers from across pen devices, notebooks,
desktop machines, high-end workstations, and even servers and multiprocessor ma-
chines. A single consistent operating system family with a common user interface,
applications, and programming model brings real benefits to both software developers
and their customers:

Software developers gain a larger market and can save time and money that they
might otherwise spend rewriting applications for each new platform and then
supporting each platform-specific product. They can come to market faster and
at lower cost, while minimizing their concern about investing in a platform with
limited market acceptance. Vendors of all types can gain greater freedom to
choose their business partners, because everyone speaks a common operating
system language. They can also leverage their operating system knowledge to
reduce costs.

MIS managers, administrators, and other support personnel benefit because
training, not hardware, is the largest cost in most computer system installations.
A single operating system family can reduce training and administration costs
for years to come; it simplifies and improves administration, leverages mini- and
mainframe legacy systems, and eliminates the costs and headaches of changing
over to new systems and platforms.

End-users benefit, too. They can use an application on one platform (for exam-
ple, their desktop), and know it will operate the same way on another platform
(such as a pen-based sub-notebook). Once they have mastered one applica-
tion, they will know how to work with completely different ones, because their
various applications will work according to a consistent set of principles set
by a single operating system. For end-users, this can save time and money; it can
also boost productivity and effectiveness.

That is the strategy behind the expanding family of Windows operating system
products. We are implementing this strategy through a scalable range of solutions,
including:

A Windows-compatible operating system for Microsoft At Work handhelds and
small mobile devices

Windows 3.1 for midrange and standalone PCs

Windows™ for Workgroups for networked workgroup computing

Foreword ix

e Windows NT, a 32-bit operating system for powerful PCs, workstations, and
large organizational networks requiring a great client-server solution

For developers, the key to accessing these Windows solutions is the Win32 Appli-
cation Programming Interface, a from-the-ground-up 32-bit programming interface
for application development. Whether you're developing an entirely new application,
or porting existing software to Windows from another system, such as UNIX or OS/2,
Win32 allows you to write 32-bit applications that are compatible across the family of
Windows solutions. Best of all, Win32 allows you to leverage the full advantage of Win-
dows NT—the most powerful, reliable, and open platform for client-server computing.
As corporate users increasingly turn to client-server computing for mission-critical and
line-of-business solutions, developers will succeed based on their ability to harness
Windows NT through Win32 application development.

How can you leverage Win32 to develop powerful, 32-bit applications for Windows
NT and the Windows family? With Advanced Win32 Programming, you've already taken
an important step. Martin Heller has done a masterful job of providing an all-in-one
resource to Win32 development. In the pages that follow, you'll find a grand tour of
Win32, including clear, abundant, and eminently practical step-by-step instructions and
examples. Heller articulates the distinct issues you’ll face, whether you're coming to
Win32 from 16-bit development, porting from another 32-bit system, or creating an en-
tirely new application.

Heller shows you how to make the transition from the C programming language to
C++; how to optimize your Win32 application for Windows NT; how to run a Win32
application on Windows 3.1 using Win32s; even how to support multimedia and pen
computing. With Heller at your side, you'll master networking, interprocess communica-
tions, and related mechanisms for distributed client-server solutions. You'll even discover
how to use Unicode to create international versions of your application. With your Win32-
based applications, you'll be able to fully leverage the power, reliability, and openness of
Windows NT. Here’s a closer look at these advantages:

e Windows NT delivers its power through the same Windows interface and
technology already familiar to millions of Windows users. Win32 builds on that
advantage by making advanced operating system capabilities available to
applications through features such as multithreaded processes, synchroniza-
tion, security, I/0, and object management. Your users can run more applica-
tions, and more powerful ones, at once. Because Windows NT is platform
independent and scalable, users will be able to run your Win32 applications on
processors ranging from Intel® X86 chips and RISC chips from MIPS and Digital

x Foreword

to some 30 symmetric multiprocessing systems—and on more than 2,600
computers and peripherals.

e Users need your 32-bit applications to run in the most reliable environment
possible. Reliability and security have been “designed” into Windows NT, not
added onasa layerafterwards. Features including uninterruptible power supply
support and the new Windows NT file system (NTFS), minimize the chance of
hardware failure and help ensure fast recovery from any exceptional failures
that do occur. Windows NT provides comprehensive security and is govern-
ment-certifiable at the C2 level of security to guard against inadvertent or
malicious tampering. That enables Windows NT—and your Win32 applica-
tions—to penetrate new markets.

* Openness is another strategic criterion for a 32-bit operating system. The Win-
dows NT operating system has built-in support for multiprotocol networking,
including TCP/IP, NetBEUI, IPX/SPX, and DLC. It supports most networks,
including SNA, LAN Manager, NetWare, NFS, Banyan® VINES, and AppleTalk.
Windows NT supports distributed computing standards, including Windows
Sockets, Named Pipes, and OSF DCE—compatible Remote Procedure Calls
(RPC). This combined support makes Win32 an excellent choice for your
distributed client-server applications—they can seamlessly access information
on different hosts and databases throughout a network.

Understandably, industry participants share our enthusiasm for Windows NT. By the
time Windows NT was introduced in mid-1993, more than 73,000 of them had already
purchased the Windows NT software development kit, making it one of the best-selling
operating systems software development kits ever. Independent software vendors have
more than 2,000 32-bit applications for Windows NT under active development. Corpor-
ate users are developing another 3,800 applications for in-house use. More than 25 percent
are native ports from UNIX®, VMS®, OS/400, and other high-end systems.

Welcome to the world of Win32 and Windows NT—and best wishes for success as you
discover the benefits of 32-bit Windows application development for yourself.

Paul Maritz

Senior Vice President
Systems Division
Microsoft Corporation

Preface

Advanced Win32 Programming is, in a sense, a travel guide or road map. It maps the
territory we software developers need to travel from the familiar 16-bit world of Windows
to the 32-bit frontier, programming for Windows NT and Win32s.

Why do we have to leave our familiar haunts? The advantages of moving to 32-bit
programming from 16-bit programming per se are compelling: many computations speed
up automatically, the confining 64 KB segment size becomes a roomier 4 GB linear mem-
ory space, and most of the annoying overflow problems having to do with integer ranges
disappear. In specific cases, the speedup is dramatic: for instance, when you turn
computations that use “huge” 16-bit segment:offset pointers (like the 24-bit color adjust-
ment implemented in the IMAGE2 example in my previous book, Advanced Windows
Programming) into computations that use “near” 32-bit pointers, you get roughly a factor
of five speedup.

Besides the inherent advantages of a 32-bit system, Windows NT has a number of
new features that make it attractive. Windows NT supports high-end hardware like MIPS
R4000 boxes, DEC Alpha AXP PCs, and symmetric multiprocessing machines. It has
an enhanced graphical device interface that includes Bézier curves (a useful family of
smooth curves similar to splines), paths (a generalized mechanism for creating and filling
complex figures), world transforms (which allow the displayed graphics page tobe rotated,
scaled, reflected, and/or sheared from the drawing coordinate system), and masking
(which allows regions to be excluded from display of a bitmap). It supports multiple
threads of execution (a lightweight form of multitasking), several interprocess communi-
cation mechanisms, and C2-level security. And, not least, Windows NT comes with
substantial networking support.

Win32, the API for Windows NT, is largely compatible with the 16-bit Windows 3.1
API. The basic differences: existing APIs have been widened to 32 bits; new APIs sup-
port threads, multitasking, security, Bézier curves, and other advanced features of
Windows NT; and, finally, irrelevant 16-bit APIs, such as segment manipulation, have
been dropped.

xii Preface

Win32s, a set of DLLs and VxDs that can help you increase the market for your
Win32 programs by letting them run on Windows 3.1, is useful and convenient but not
a panacea. The new APIs in the Win32 set that support advanced features of Windows
NT appear in Win32s (the “s” stands for “subset”) only as stubs that return FALSE. You can,
for instance, write a Win32s program that tries to create a thread—but you must write the
program to work even if the thread creation fails, as it will when running on Windows 3.1.

Win32s is not a completely general solution for building 32-bit Windows applications,
either. One major limitation is that it has no provision for directly calling functions in 16-
bit DLLs other than supported system functions. Win32 does, however, support several
ways to call 16-bit DLL functions indirectly.

Future versions of Windows—starting with “Chicago”™—will include much of the
new functionality that is in Windows NT. A Win32s program, written to take advantage of
advanced functions when they are present, will automatically work better and faster on
newer versions of Windows than it does on Windows 3.1. If you want to prepare for
“Chicago” learn Win32 now.

I decided to write Advanced Win32 Programming for selfish reasons: I wanted to
force myself to use the new functionality in Windows NT, and to force myself to migrate
from C programming to C++ programming. I've tried to keep a good enough log of my
journey for it to be useful as a map for others attempting similar journeys.

I hope you'll find Advanced Win32 Programming useful as a guide, whether you're
porting existing code from 16-bit to 32-bit Windows, writing new code compatible with
both, or jumping into 32-bit Windows programming with both feet. Whether you’re new
to all this or an old hand, T hope you'll find some ideas and snippets of code here that you
can use in your own work. If you haven't already done so I hope you'll also read my
previous volume, Advanced Windows Programming, which takes you from familiarity
with the Windows SDK to the point where you can write substantial, multimodule
Windows programs.

To actually use the material in Advanced Win32 Programming you should have
access to a computer running Windows NT, to copies of the Win32 documentation, to 32-
bit C and C++ compilers for Windows NT, to a computer running Windows 3.1, and to
copies of the Win32s libraries.

In Chapter 1, “Crossing the Great Divide,” we learn to make the transition from 16-bit
programming to 32-bit Windows programming. In Chapter 2, “Any Port in A Storm,” we
move the Image2 example developed in Advanced Windows Programming to Win32
as quickly as possible. Then in Chapter 3, “Upping the Ante,” we learn to make the transi-
tion from C programming to the C++ programming language, encapsulating as we go.

Preface xiii

We clean up our ported code, and think about reorganizing it as C++ with classes, in
Chapter 4, “A Higher Standard.” Then we learn to use some of the advanced features of
Win32 in Chapter 5, “Total Immersion.”

We take a step back and learn to trade off between the advanced features of Win-
dows NT and compatibility with Windows 3.1, using Win32s, in Chapter 6, “With a
Shoehorn.” In Chapter 7, “A Little Song, A Little Dance,” we begin to apply some multimedia
programming; in Chapter 8, “The Pen Is Mightier,” we learn to support Pens, Ink, and
Tablets.

We learn to use Unicode and do internationalization in Chapter 9, “Lingua Franca,”
and in Chapter 10, “OLE Again,” we investigate OLE 2 and perhaps even OLE 3. In Chap-
ter 11, “Citizen of the Galaxy,” we examine interprocess communication and distributed
computing, and finally in Chapter 12, “The Far Horizon,” we look into the future. In
addition, for those of you looking for tools, we describe some resources and tools for
Win32 Development in the Appendix, “Cornucopia.”

That’s a lot of material. Never fear: we'll start slowly, and there will be plenty of
examples.

It's next to impossible to write a book of this kind without help. First and foremost, I'd
like to thank my editor, Diane Cerra, for pushing—and pushing, and pushing—me
to actually write the book. Like all writers, I prefer having written. It's okay, Diane: you
can put away the bullet with my name on it until the next book.

I'd also like to thank my reviewers: Ed Adams, Roger Grossman, Timothy Larson, Chris
Marriott, John Ruley, William vanRyper, and Bjarne Stroustrup. These gentlemen spent a
lot of time telling me I was all wet and making me do better, and [appreciate their efforts—
now that I have rewritten, and rewritten, and rewritten.

The clean design and layout of this book is the work of Claire Stone Spellman of
Desktop Studios, aided and abetted by Frank Grazioli and his production team at Wiley.
I did my writing in Microsoft Word for Windows and saved the figures as TIFF files; Claire
took the files on diskettes and laid them out in PageMaker for the Macintosh. We'll get the
bugs worked out of that process one of these days; meanwhile, Claire worked around a
few of them with simple but time-consuming methods like recreating sections from
scratch.

Finally, T'd like to thank my wife Claudia and my daughters Tirzah and Moriah for
putting up with me as I muddled through another book. It's not easy living with a writer,
and my family made sure I didn’t ever forget it. Claudia in particular had plenty to put up
with, but she won the race: our third child was born after I finished writing the body of the
book, but before this book came off the press. It is to that child that I dedicate this book.

Contents

Foreword by Paul Maritz, Microsoft Corporation

Preface

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Crossing the Great Divide
In which we learn to make the transition from 16-bit programming
to 32-bit Windows programming.

Any Port in a Storm
We move the Image2 example developed in Advanced Windows
Programming to Win32 as quickly as possible.

Upping the Ante
In which we learn to make the transition from the C programming
languageto the C++ programming language, encapsulating as we go.

A Higher Standard

In which we clean up our ported code, and think about reorganizing
it as C++ code with classes.

Total Immersion
In which we learn to use some of the advanced features of Win32.

With a Shoehorn

In which we learn to trade off between the advanced features of
Windows NT and compatibility with Windows 3.1, using Win32s.

A Little Song, A Little Dance

In which we learn and apply some multimedia programming.

The Pen Is Mightier

In which we learn to support Pens, Ink, and Tablets.

vii

Xi

23

47

79

131

237

261

319

vi Table of Contents

Chapter 9: Lingua Franca 333
In which we learn to use Unicode and do internationalization.
Chapter 10: OLE Again 351

In which we learn about OLE 2 and perhaps even OLE 3.

Chapter 11: Citizens of the Galaxy 363
In which we learn about interprocess communication and

distributed computing.

Chapter 12: The Far Horizon 441

In which we look into the future.

Appendix: Cornucopia 445

In which we describe some resources and tools for Win32 development.
Recommended Reading 451
Index 455

CHAPTER

In which we learn to make the
transition from 16-bit programming
to 32-bit Windows programming.

Crossing the Great Divide

There are many ways to get from the east coast of the United States to the west coast.
Today, most people fly, but some drive, using one of several possible interstate high-
ways. A hundred fifty years ago, small parties of hardy (or foolhardy) pioneers set
out in horse-drawn wagons. They hoped to cross the deserts as quickly as possible,
hoped to cross the mountains before the winter snows, hoped to avoid hostile
natives.

Not everyone survived the trip. Without good directions, you could get lost in the
desert without water, miss the mountain passes. A party whose wealthiest family was
named Donner found out the value of good directions the hard way.

Follow me: I've been there and back. I'll get you through safely.

This first chapter is a sort of hazard map: it doesn’t show you the best route, but it
shows you where the mountains and deserts lie. Later on, we'll find out how to avoid
most of the hazards.

Our first obstacle is the very change in word size that induced us to make the trip
in the first place. It's a small obstacle; some might say even a trivial obstacle. But it has
tripped up many a pioneer.

2 Crossing the Great Divide

Word Size Annoyances

The influence of word size on programming is often both over- and underesti-
mated. It is overestimated by people who believe that a larger word size automati-
cally makes programs run faster and more accurately, and underestimated by people
who ignore the capacity, range, and exception-handling issues that are important
when the word size is too small for the problem at hand.

A 16-bit signed integer has a range of -32,768 to 32,767 (32K-1);a 16-bit unsigned
integer has a range of 0 to 65535 (64K -1). A 32-bit signed integer has a range of
-2,147,483,048 to 2,147,483,647 (2G-1) and a 32-bit unsigned integer has a range
of 0 to 4,294,967,295 (4G - 1).

Limits of 32K and 64K arise frequently in 16-bit Windows programming, some-
times directly because of the size of an integer, and sometimes indirectly because of
the maximum size of a memory segment. Sometimes, the limit is a minor annoyance
that can be avoided with careful coding; other times, the limit causes a major slow-
down in the program. Some examples are in order.

First, a minor annoyance. You might want to find the centroid of a cluster of points
in your display space. If the display space is 640 by 480 (the VGA screen) the follow-
ing code will work correctly for 16-bit integers:

#define n 10
int x[n],y[n],xmid=0,ymid=0;

for(i=0;i<n;i++) {
xmid += x[i];
ymid += y[il;
}

xmid /= n;

ymid /= n;

The code continues to work on a 1024 by 768 Super-VGA screen. But what happens
when you go to print on a 300-dot-per-inch laser printer? The 8.5-inch by 11-inch
page would have dot coordinates of 2,550 by 3,300. Once in a while—not often—
ten coordinates will add up to more than 32,767, the sum will overflow, and you’ll
wind up drawing the centroid at the wrong end of the page (or even off the page)
since the result will be a large negative number. Obviously, if n were bigger than 10
the error would occur more frequently.

In the case of the centroid, we can rewrite the code to be more reliable, albeit
less efficient and less accurate, without resorting to long variables:

#define n 10
int x[n],y[n],xmid=0,ymid=0;

for(i=0;i<n;i++) {
xmid += (x[i] / n);
ymid += (y[i] / n);
}

Word Size Annoyances 3

Another alternative for this particular problem would be to make xmid and
ymid into long variables—that is, use 32 bits just for the working variables. In a
16-bit architecture, that means that the compiler has to generate code to extend
the value of x [1]1and y [1]from 16 bits to 32 bits, and has to generate or call code to
add two 32-bit numbers using 16-bit registers. That's a poor substitute for the add
instructions generated by the addition code in the original loop.!

What about a more serious case? Consider this code from the PROCESS module
of IMAGE2, the final example program in Advanced Windows Programming:

‘int dr,dg,db;

‘double r,g,b,dh,ds,dv,dl,h,s,v,1;

KLPBITMAPINFOHEADER 1lpbi;

RGBQUAD FAR *pRgb;

unsigned char huge *pixels;

unsigned char huge *pb;

unsigned char huge *pbl;

unsigned char huge *pb2;

int colors,i;

DWORD il; ,
//NOTE: BOUND is a macro that 1imits the first variablef
// to the range of the second and third variables '

lpbi=(VOID far *)GlobalLock(hdibCurrant).
'pixels = (unsigned char huge *)(lpb:. + lpbi-)bisize);
switch(ColorModel) {
case IDD_RGB: /
for(il=0;il<lpbi- >bisizeImage,il+ 3)‘ {
pb=pixels+il;
pbl=pixels+il+l;
pb2=pixels+il+2;
*pb = (BYTE)BOUND(*pb +db 0, 255),
*pbl = (BYTE)BOUND(*pb1+dg,O‘255)3
*pb2 = (BYTE)BOUND(*pb2+dr,0,255);
} i
break;

There are a couple of things to notice in this particular example, which is sup-
posed to alter the colors in a 24-bit image. First of all, the logic is incorrect and the
routine fails for some images: instead of looping over the pixels in the entire image
linearly, the code should loop over pixels within scan-lines. Why? Because the ends
of the scan-lines can be padded out so that the next line will fall on a double word
boundary, which throws off the counting by threes. That would be bad enough, but
there’s worse to come: Windows doesn’t necessarily even have memory assigned
to the null bytes at the ends of scan-lines. If you found and fixed this bug youself,

! Consider the code generated by ¢ = a*b, where all the variables are declared 1ong. The 16-
bit Microsoft compiler will generate a call to a subroutine that does roughly 5 multiplications and
2 additions. Almost any 32-bit compiler will generate inline code for this line that does one multi-
plication. (Thanks to Chris Marriott for pointing this out.)

