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Preface

A working knowledge of differential forms so strongly illuminates
the calculus and its developments that it ought not be too long delayed
in the curriculum. On the other hand, the systematic treatment of
differential forms requires an apparatus of topology and algebra which
is heavy for beginning undergraduates. Several texts on advanced
calculus using differential forms have appeared in recent years. We may
cite as representative of the variety of approaches the books of

Fleming [2], (1)

Nickerson-Spencer-Steenrod [3], and Spivak [6]. Despite
their accommodation to the innocence of their readers, these texts cénﬂot
lighten the burden of apparatus exactly because they offer a more or less
ﬁgll measure of the trufh at some level of generality in a formally
precise exposition. There is consequently é gap between texts of this
type and the traditional advanced calculus. Recently, ;n the occ;sion of
offering a beginning course of advaﬂced calculus, we undertpok the experi-
" ment of attempting to present the technique of differential forms with

minimal apparatus and very few prerequisites. These notes are the result

of that experiment.

Our exposition is intended to be heuristic and concrete. Roughly
speaking, we take a differential form to be a multi-dimensional integrand,
such a thing being subject to rules making change-of-variable calculations
automatic. The domains of integration (manifolds) are explicitly given

"surfaces'" in Euclidean space. The differentiation of forms (exterior

(1) Numbers in brackets refer to the Bibliography at the end.
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differentiation) is the obvious extension of the differential of functionms,
and this completes the apparatus. To avoid the geometric and not quite
elementary subtleties of a correct proof of the general Stokes formula

we offer instead a short plausibility argument which we hope will be found
attractive as well as convincing. This is one of several abbreviations

we have made in the interests of maintaining an elementary level of

exposition.

The prerequisite for this text is a standard first course of calculus
and a bit more. The latter, though not very specific, may be described
as some familiarity with Euclidean space of k dimensions, with k-by-k
matrices and the row-by-column rule for multiplying them, and with the
simpler facts about k-by-k determinants. Seriocus beginning undergraduates
seem generally to possess this equipment at the present time.. Linear
algebra proper is not required, except at one place in Chapter 6, where we
must diagonalize a real symmetric matrix. For this theorem, and for
several other facts of algebra (such as those mentioned above), we offer
references to the text [5] of Schreier and Sperner. There the matters in
question are well presented without prerequisites. For analytical matters
we provide citations to Courant [1]. We have tried to design the text so
that, with the books of Courant and Schreier-Sperner as his only other
equipment, the industrious reader working alone will find here an essentially
self-contained course of study. However, the better use of this text
is probably its obvious one as part of a modern soﬁhomore or junior course

of advanced calculus.

The content of each Chapter is clear from the Table of Contents,

with two exceptions: in 6.2 we give the theorem on the geometric and
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arithmetic means, and in 7.3 we prove the isoperimetric inequality. Our
notations, all standard, are listed on page (x). The symbol n.m(k)

means Formula (k) in Section n.m.

It is a pleasure to acknowledge several debts of gratitude: to
P.A. Griffiths, who encouragéd the project and suggested the, indlus;on of
A "something on integral geometry"; to Mary Ellen O'Brien, who gave the
manuscript its format in the course of typing it; and to the g&udents, who

37

were willing to participate in an experiment.

M. Schreiber
21 July 1977
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Chapter 1
Partial differentiation

1.1 Partial Derivatives

We denote by Rk the set of real ordered k-tuples

=

X = (xl,xz,...,xk) ’ Such a k-tuple is called a k-vector, the

numbers X being its components. k-vectors are added and

o
multiplied by scalars in the component-wise function familiar in the
plane and in three-space. In this notation the plane and three-space

are denoted R2 and R3 respectively.

+> > -
The inner (or scalar) product Xy = Z xiyi of k-vectors x
and ; determines length and angle in Rk as follows. The length

||;” of x is |l;]| =V ;-;, and the angle 6 between x and ;

vl -

k ;
These are exact analogs for R of the corresponding constructions

in Rz and R3 . In particular, ;st is called a unit vector

is defined by the relation (law of Cosines) Cos 0 = ;;/H)—()H .

if H;H =1, and k-vectors ;,; are orthogonal if x ; = 0.

A function of n variables may be viewed as a function of an
n-vector argument or variable. We shall be concerned also with functions
taking vector values. The notation £f: R'>R" signifies that f

is a function of an n-vector argument taking m-vector values. Since



a l-vector is just a number, a function £ :R" +Rl is a scalar-
A}

valued function of n variables.

Take as orthogonal reference frame in ]Rk the unit vectors

e, = (1,0,...,0), &, = (0,1,0,...,0) , ..., & =(0,...,0,1). The

lines on which they lie are then a system of axes for a Cartesian coor-
dinate system in Rk . Every point ;emk has a unique expression
X - X xigi in this reference frame, its Cartesian coordinates in this
frame being (xl,xz,...,xk). To each coordinate direction is asso-
ciated a partial differential operator 'L, which acts upon

9x
i
scalar-valued functions f :Rk -»Rl of a vector argument thus:

f(x+ agi) - £(%)

[5- £1() = lim : 1
i 80 6
Note well that the result of applying the operator % to a function

k 1 . 3 k 1 *
f:R ->R is another function [a—' f] : R -»R of the same type.
i

We will denote this new function, whenever possible, by the short nota-

tion f Thus

i
> 9 . .
D - e T 2

and fi is called the ith‘ partial derivative of f . 1Its geometric

significance is as follows. Given f :]Rk +]Rl, we may interpret the

equation

z = £(%) (3)



as defining a k-dimensional surface in BJC+1. If we fix all but the

th . > _k th
i coordinate of a point xeR , and let the 1 coordinate X,

vary freely, we generate a straight line in FF passing through x and

>
lying para}lel to ei . Its coordinates are (xl’x2""’xi—l’t’xi+1'°'7’xk)’

with - <t <+o0o. Its image under f 18 a l-dimensional curve (it has
one degree of freedom; namely, the variation of t) 1lying on the surface

(3). The slope of this curve as a function of t is

By GrpXyae Xy potoXyygeeeenn)

Since the partial derivatives fi of a function f: RF-HRI are

again functions of the same type, they too may be differentiated partially.
The result of differentiating fi by its jth argument may (and will,

whenever possible) be denoted f... The concordance with the standard

ij

notation is

2
-9 =_a[_a_f]_ %)

One should note the reversal of order of the subscripts. Since the f

ij
are again functions of the same type, they may be differentiated partially;

%" In this hierarchy, the fi are called

first partials, the £ second partials, and so on. We are assuming

ij
for the purposes of this discussion that all limits involved (they are

denote these functions by fi

all of the general form (1)) exist. This being assumed, there are in
principle k first partials fl,fz,...,fk § k2 second partials

f f f k3 third partials; and so on.

RERSUIRRER LIRS LI PEE R RERRL R



On the other hand, it is not hard to show, using the mean value theorem,
that when all partial derivatives involved are themselves continuous

functions of their several variables, then the order in which the

) .
For example, f12 f21

if both are continuous functions; similarly f112 = f121 = f211 if

all are continuous. Thus the number of distinct higher partials {is

differentiations are done does not matter.

sharply reduced if they are continuous. The rule for the equality of
mixed higher partials may be stated thus: two higher partials are equal
(when they are continuous functions) if they involve the same indices

with the same multiplicities.

\J

1.2 Differentiability, Chain Rule

By definition a real function f :R;-+B} of a real argument is

differentiable at x if

o) m £ = 1) +etn) (1)
e(h) -0 as h-=+0 ; (2)

which is to say, the increment

-
(af) (x,h) = £(xt+h) - £(x)

(1) See Courant [1], volume II, pp. 55-58.



is approximated by the differential
(df)(x,h) =£'(x) *h (3)

so well that the error n(h) = h « e(h) vanishes faster than h,

1im Mhh)- = 0. Note that the differential is a linear function of the
h-0 :
increment h.

Suppose, for a given function f: Rl -»Rl' and a given xe]Rl ,

that there exists a constant A and a function a: Rl ->]R1 such that

(Af) (x,h) = Ah + a(h),

" (&)
lim Q%Q = 03
h-0

which is to say, the increment (Af) (x,h) can be approximated with
the stated accuracy by a linear function of h . This would imply at.

once that f is differentiable at x and that f'(x) = A.

Putting together the two foregoing paragraphs, we see that, for
functions of one variable, differentiability is the same as linear
approximability. The generalization of differentiability to functions
of several variables is made by generalizing to several variables the
idea of linear approximability, as follows.

A function f :JRk +Rl is (by definition) differentiable at

b4 :»:IRk if there exist constants Al’AZ""’Ak and a function

a :]Rk -rIR:L such that



6 (%R = Jan, + a(h) , (5)
g 2 o (6)
2. I8l

where h = (hl’hz""’hk) is the increment vector and (Af) (;,K) =

f(;i-ﬁ) —f(;) is the corresponding increment of f.

We have replaced the linear function Ah of (4) by a linear

function of the components hl""’h of the increment vector t_;, and

k
"h +0" becomes "h-0". This is the exact analog of (4). Note that

for any - ;e]Rk one has

%yl < Il < Vi - Maxtxy [aeens I |3, (M

for xj < z xzi < k - Max{xi,...,xlzc} : Therefore all components of
X are small independently if and only if |x| 1is small, and so

h+0 if and only if ﬁfq] +0 if and only if hj +0 for each J.

Assume f is differentiable in this sense, and put ﬁ=ég in

i
(5). This yields

f(x+ 521) - £(%

>
= A, + o)
i ’
§ 8
. > >,
whence the limit as §->0 (i.e., h->6) exists, and Ai = fi(x) :
That is to say, differentiability as defined above implies the existence

of the first partial derivatives. Conversely, if f has continuous



first partial derivatives near a point ;, then f is differentiable
at ;c), as we shall now show. The proof is perhaps forbidding in

A ->
notation, but the idea is quite simple: one makes the change from x
i, . . . . " .
to x+h in successive steps involving one variable at a time, so that

the definition 1.1(1) and basic property (1), (2) of differentiation

may be invoked. Here is the proof. To establish (5), (6) we put
k

B = Zhigi and decompose (Af) (x,h) as (Af)(X,R) = f(;(r+2hié*i) - (%) =
i=1

he—m =

{f(x+ ) h,e,) -f(x+ | h.e.)}, where the last term (j=k) is
. NP aE - & e 2 ii
ji=1 i=j i=j+1
to be interpreted as {f(; +hkgk) —f(;)}. Now f(;()+ z hjgi) -
i=j *
f(x+ Y he,) = hf x+ J hie) +a,, where ao./h, >0 as
i=j+l 11 J ] i=j+l 11 ] J J
h+0, by 1.1(1) and (1), (2). By the assumed continuity of the first

- - -
partials, we have h.f (x+ Z h,e,) = h,f (x) +h,e., where e,>0 as
3 1mj+1 i3 i3 J

k k
h,»>0 . Therefore (Af)(;,g) = Jhf,(x)+ Y {a.+h.e.}. By means
b i 2. 30 373
] J=i
k
of the first part of (7) one sees that the error term | {otJ. +hj£j}
j=1

satisfies (6), and the proof is complete.

The following notation is suggestive. Put d; = (dxl’dXZ"""dxk)

for the increment vector, formerly called ﬁ, and write
@f) (x,dx) = Zfi(;)dxi (8)

for the linear term in (5). This quantity, which we emphasize is a
L -> ->
function of x and of dx, is called the differential of the function

£ :Rk ->1R1, and one should note the similarity with the corresponding

formula (3) for a function of one argument. The definition of differentiabili



may now be given essentially the same formulation, for functions of
one or of several arguments: f is differentiable at a point ifvthe
increment Af near the point is approximated by the corresponding
differential df within the prescribed accuracy (4) or (6) respectively.
For functions of one argument the existence of the derivative is suffi-
cient for this accuracy, and for functions of several arguments we have
shown that the existence and continuity of the first partial derivatives
is sufficient.

h B

Suppose we have a function E :]Rl -*]Rk with components gi :R™ >R,

i=1,2,...,k. That is, E(t) = (gl(t),gz(t),...,gk(t)), teRl. If

i

each gi is differentiable, - (Agi) (t,h) =h -%E—ﬂ;i(h), where
>

(a,(h)/h)+0 as h-=>0, then (Ag)(t,h) =h -%E-+;(h) »  where

dt dt ’°°°7’ de

(]];(h)“/h) +0 as h=+0. It is therefore a natural extension of the

1 k
4 . [51_8_ 93—] and ;(h) = (al(h),...,ak(h)), and clearly

terminology to say in this circumstance (namely, each gi is differen-
tiable) that g is differentiable.
> 1k - Kk .1
1f g :R »>R is differentiable and f :R R is differentiable,

1

>
then the composed function fog: Rl +R is differentiable, and

S o) = [ £,@) -l . )

/
/

Tﬁié formula may be guessed from (8), as follows. Putting 3’:=§(t). there,
we have df(g(t),dz) = Xfi(g(t))dgi , and dividing now by 'dt we get
(9), more or less. 'Here is a proof of (9). By the differentiability of

£ wehave E(t4) = () +h B +3I(M) . Now (fod) () =

f(E(t-Hx)), so by the differentiability of f we have (f oE)(t+h) =



\

(F08)(t) + £ GB(r)) -{hg—gim *a ()} +BOEE))
(foB)(t) + hzf (&(t)) - ac & (t) +Lf (&) *a (h) +B(A§(t))- Thus
A(ng)(t,h) is approximated by h{ Z f (g(t))‘ -— (t)} with error

£, @(©)ay(h) +80E(®). Now =[f (&(t) +a,(h) >0 as h>0
because 'l-u (h)+0 as h+0; and —B(A (t)) =J—KS—D- l__&ﬁ_)_[

hot lag(o] h
as h=+0 because the first factor vanishes by the differentiability of

f, and the second factor equals ﬂ g( ) + a—(ﬂ | '+ which approaches
" g(t)] as h-+0. Thus the total error vanishes with the required

rate (4); which is to say fo_é is differentiable and (9) holds.

This formula is an extension to several variables of the chain rule,

and we shall refer to it by that name.

1.3 Taylor's Theorem

Given f :]Rk -»]Rl, let F :Rl ->]Rl be defined as

F(t) = f(x+th) (1)

k

;,_ﬁ eR arbitrary and fixed. Considerations of differentiability

for

and convergence aside, the Taylor series for F 1is
e? ()
F(t) = Z;{ FY/(0) . (2)

By the chain rule 1.2(9). we have



