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PREFACE

This book is intended to be a survey of the most important results in
mathematical logic for philosophers. It is a survey of results which
have philosophical significance and it is intended to be accessible to
philosophers. 1 have assumed the mathematical sophistication
acquired in an introductory logic course or in reading a basic logic
text. In addition to proving the most philosophically significant results
in mathematical logic, I have attempted to illustrate various methods
of proof. For example, the completeness of quantification theory is
proved both constructively and non-constructively and relative ad-
vantages of each type of proof are discussed. Similarly, constructive
and non-constructive versions of Godel’s first incompleteness
theorem are given. I hope that the reader will develop facility with the
methods of proof and also be caused by reflect on their differences.

I assume familiarity with quantification theory both in under-
standing the notations and in finding object language proofs. Strictly
speaking the presentation is self-contained, but it would be very
difficult for someone without background in the subject to follow the
material from the beginning. This is necessary if the notes are to be
accessible to readers who have had diverse backgrounds at a more
elementary level. However, to make them accessible to readers with
no background would require writing yet another introductory logic
text. Numerous exercises have been included and many of these are
integral parts of the proofs. This seems desirable since the purpose of
the book is partly to provide the reader with the confidence and
ability to go on to read more condensed material on his or her own.
Some of the other examples are corollaries or interesting related
theorems.

My intention is that the book should be useful both as a reference
work and as a text for either self-teaching or classroom use. In order
to preserve maximum flexibility, chapters have been kept independent
of each other where possible. Figure a indicates graphically the
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v X
Figure a.

Material in any chapter presupposes material from those chapters which are connected
to it by (a series of) arrows. For example, Chapter V presupposes I, II, and IV; Chapter
XII presupposes I, I, IV, V, and VI; Chapter XIV presupposes I, I, IV, V, VI, VII, IX
and also XIII.

dependencies between various chapters; I will try now to summarize
the chapters and relations, and then to indicate the main types of
course the book could be used for.

Chapter I isolates what I have called the Fundamental Theorem. In
this theorem we characterize a particular type of set of formulas
(called ‘Henkin sets’) and prove that these sets of formulas have
interpretations. The definition of a Henkin set is entirely syntactic in
the narrowest sense. That is, not only do we not mention anything
about interpretations but we also make no reference to any axioms or
rules. By relating the concept of a Henkin set to sets of formulas
characterized in other ways, we derive the compactness and Skolem-
Lowenheim theorems. Chapter I also includes a number of basic
definitions required throughout the text.

Chapter II presents sets of axioms and rules of inference first for
sentential calculus and then for full quantification theory and, using
the Fundamental Theorem, proves the completeness of these
systems. Chapter III presents an alternative formulation of first order
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quantification theory due to Gentzen; the completeness proof for this
version of quantification theory is more closely connected with the
particular rules of the system. As a consequence the proof is rather
less general, but in compensation more useful corollaries concerning
subsystems can be proved.

Chapters IV and V consider the extension of quantification theory
to include identity and function symbols and prove some basic
theorems about first order theories. The main theorems include the
strong Lowenheim-Skolem theorem, the eliminability of function
symbols and the partial eliminability of identity.

Chapter VI presents the general concepts and the main outline of
the proof of the undecidability and incompleteness theorems. The
purpose of this chapter is to give the reader overall grasp of the
concepts and of the strategy of the proofs so that insight is not lost
when all of the details are subsequently developed.

Chapter VII proves in detail the first Godel theorem showing the
incompleteness of any sufficiently rich number theory, Church’s
theorem concerning the undecidability of first order quantification
theory and a number of other related theorems. Chapter VIII presents
a detailed proof of Godel’s second incompleteness theorem es-
tablishing limitations on consistency proofs. Although the intuitive
idea of this theorem can be stated as simply as that of the first
theorem, a sufficiently accurate statement of the theorem is con-
siderably more difficult. Considerable attention is paid to the con-
ditions necessary for a statement to express the consistency of
arithmetic. This chapter contains, to my knowledge, the first detailed
textbook presentation of this theorem.

Chapter IX presents detailed proofs of Tarski’s theorems, both
negative and positive concerning the definability of truth. Although
the topics here are somewhat independent of the previous chapters,
the machinery used in proving the theorems depends heavily on
previous chapters and hence cannot be read independently of them.

Chapter X extends the development of recursion theory which was
begun in Chapter VII. The Kleene hierarchy is defined and various
results are established concerning the undecidability of various sets
and concerning the definability of recursive functions. Generaliza-
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tions of Craig’s theorem concerning types of axiomatizability and of
Godel’s theorem are proved.

Chapter XI uses the recursive function theory just developed in
order to provide a classical interpretation of intuitionistic logic and
arithmetic (Kleene’s recursive realizability interpretation). The in-
dependence of basic classical principles denied by intuitionists such
as excluded middle and double negation is shown by means of this
interpretation.

Chapter XII presents a system of second order logic, a generaliza-
tion of first order logic in which quantification ranging over predicate
positions is introduced. It is shown that Peano arithmetic theory
based on this logic is categorical, unlike first order Peano arithmetic.
It is also shown that the logic is not compact and has no recursive set
of axioms. An alternative extension of first order logic which permits
quantification over function symbols is also considered and shown
equivalent to second order logic. Systems in which independent
branches of first order quantifiers are permitted are also considered
and their relation to first and second order theories is established.

Chapter XIII gives a detailed presentation of two alternative
methods of formulating first order quantification in which the syntac-
tic and semantic operations are more closely parallel. These systems
are formulated in such a way that all assertions consist of equations
between formulas which assert that the formulas are assigned the
same truth conditions in the interpretation. In these systems the only
rules of inference required are those for substitution of identities. The
systems are shown to be equivalent to each other and to standard
quantification theory in expressive power. In spite of their
equivalence in expressive power, these systems embody a con-
siderably different perspective on logic. From this perspective for-
mulas are operations on sets of sequences and logic can be viewed as
the study of these operations and their representation in various
languages.

Chapter XIV considers a natural extension of the systems of the
previous chapter which permits atomic predicates to be assigned
sequences of varying length. It is shown that the standard quan-
tification theory is properly contained in this system, that a par-
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ticularly elegant definition of truth can be given in this theory, and
that no recursive axiomatization of the logic exists.

Evidently this book could be used in various types of semester course
emphasizing different aspects of non-elementary logic. A course in
alternative forms of quantification theory could be given using Chapters
I-V and Chapter XIII; a course on foundations of arithmetic could be
given using Chapters I, II, IV, V-VII, X and XI; a course on first order
theories could be given using Chapters I, II, IV-X; a course on
alternatives to standard quantification theory could use Chapters I, II,
IV-VII, X-XIV.

The Bibliographical Acknowledgements lists the original sources of
the proofs and also contains indications of further material for the
interested reader.
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CHAPTER 1

HENKIN SETS AND THE FUNDAMENTAL THEOREM

We will begin by proving a fundamental result which will be used
repeatedly in the proofs of our major theorems. We will prove it for
the full language of quantification theory even though some of our
systems will have a restricted vocabulary. No change in the proof is
required for the restricted vocabularies.

The full vocabulary of quantification theory consists of the logical
particles —, D, A, v, 3, and V, the parentheses (, ), an infinite list of
individual variables x,, x;, X5, . . . , an infinite list of individual constants
Co, C1, Ca, . .., and for each n >0 an infinite list of n-place predicate
letters Fg, Fy,....

A term is any individual variable or constant.

An atomic formula is an n-place predicate letter followed by a
sequence of n terms.

A sentential letter is a 0-place predicate letter.

A sequence of symbols is a formula iff it is atomic or if it is of the
form (AAB)or—Aor(ADB)or(Av B)or(Vv)A or (3v)A, where
A and B are formulas and v is an individual variable.

This definition illustrates our practice of using A, B, C, D, E, A,

B,, ... as metalinguistic variables for formulas v, v,... as metalin-
guistic variables for object language variables. In addition we use ¢,
t,,... as metalinguistic variables for terms.

The occurrences of a variable v in a formula (3 v)A or (Vv)A are
bound occurrences. Occurrences of a variable which are not bound
are free. We frequently abbreviate (V v)A by (v)A.

We use the notation A;] to indicate the formula which results from
substituting ¢ for s in A provided that if s is a variable ¢ is substituted
only for free occurrences of s, and if ¢t is a variable all new oc-
currences of t are free. If these conditions are not satisfied A;j is
simply A.
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EXERCISE 1. What formula is ((x;) Fx,c,);!?
((XI)FXM)Q? ((xl)Fxlcl):;? ((xz)Fxlxz)g?

A model for the quantificational language is an ordered pair (D, I)
where D is a non-empty set and I is a function such that

(1) for each constant ¢, I(c) € D.

(2) for each predicate letter F;, I(F[")C D".

D" is the set of n-tuples of objects in D. Note that D° has one
element, the empty sequence { ). Thus a 0O-place predicate letter F;
can be assigned either A or {( )}. The first corresponds to being
assigned ‘true’ and the second ‘false’ in usual presentations. The
present approach may look like a ‘trick’ but we will show in Chapter
XIII why it is natural.

In order to define truth in a model we must first define satisfaction.
Let a be a function which assigns an element of D to each individual
variable and I(c) to each constant. Such a function is said to be a
sequence in (D, I) and we will use the metalinguistic variables a, 3, v,
a;, By, ... to range over such sequences.

It will be useful to have a notation for the relation which holds
between two sequences a and B when they agree on all variables
except possibly v. We will write this as « =, and it means that for all
o' # v, a(v) = B(v'). ’

The relation a satisfies A in (D, I) is defined recursively:

a satisfies F;, , in (D, I) iff (a(t)),... a(t,)) E I(F")
a satisfies —A in (D, I) iff @ does not satisfy A in (D, I)

a satisfies (A A B) in (D, I) iff a satisfies A in (D, I) and
satisfies B in (D, I)

a satisfies (A v B) in (D, I) iff a satisfies A in (D, I) or a
satisfies B in (D, I)

a satisfies (A D B) in (D, I) iff a satisfies B in (D, I) or
a does not satisfy A in (D, I)

a satisfies (v)A in (D, I) iff for all B, if a =~ B then B
satisfies A in (D, I)
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a satisfies (3 v)A in (D, I) iff for some B, a= B and B
satisfies A in (D, I).

A formula A is true in (D,I) iff A is satisfied in (D, I) by all
sequences in (D, I). A formula is valid iff it is true in all models. We
often symbolize ‘A is valid’ as = A. A sentence is false in a model iff
its negation is true in that model. Note that there are formulas and
models such that the formula is neither true nor false in the model. We
define a formula to be a closed formula or a sentence iff it has no free
variables. Closed formulas are true or false in each model.

EXERCISE 2. Give an example of a formula A and model (D, I)
such that A is neither true nor false in (D, I).

EXERCISE 3. Show that if A is a closed formula and (D, I) is a
model then A is either true or false in (D, I).

A formula is satisfiable iff it is satisfied by some « in some model.
A set of formulas is simultaneously satisfiable iff there is an a and a
model such that a satisfies all of those formulas in that model. We
will use I' with and without subscripts as a metalanguage variable
ranging over sets of formulas. We will use € in its usual set theoretic
sense of membership.

A formula A is a semantic consequence of a set of formulas I' iff
every sequence and model that simultaneously satisfy I' also satisfy
A. This is equivalent to saying that I" U (—A) is not simultaneously
satisfiable. We will often simply speak of ‘consequence’ meaning
‘semantic consequence’, and we will symbolize it as I'= A.

Some other conventions will be useful. We will speak of A having a
model M or of M being a model for A; this means that A is
satisfiable in M. Similarly we will speak of sets of formulas having a
model meaning that they are simultaneously satisfied in some model.
Finally we will often abbreviate simultaneously satisfiable as s.s.

Our first theorem is an intuitively plausible one which is needed
frequently in our proofs. It tells us that if two formulas are alike
except for their constants and free variables then if @ and B8 assign
the same things to corresponding terms then a satisfies the one



4 : CHAPTER I

formula iff B satisfies the other. More rigorously,

THEOREM. For any model and any sequences a, B, and any
formulas A, B, if
@) t,...t, do not occur in B

(ii) t,4;- .. t,, are variables which do not appear in A

(i) B is A7,

(iv) a(v)=B(v) unless v =t or... orv==t,,

) a(t) = B(ta),
then a satisfies A iff B satisfies B.

Proof. By induction on the order of formulas. An atomic formula is
of order 1. If A is of order n then —A, (v)A and I vA are of order
n + 1. If n is the maximum of the orders of A and B then the order of
(AAB),and (ADB)is n+1.

If A is of order 1 then A is atomic and, by construction, @ and B
assign the same elements to the corresponding terms of A and B.

We now assume the theorem holds for orders <n and show that it
holds for n as well. If A is a negation, disjunction, conjunction or
implication the fact to be shown follows immediately from the induc-
tion hypothesis and the definition of satisfaction. For example, if A is
—C then B is —D where C and D satisfy the conditions of the
theorem and are of order n — 1. Therefore, a satisfies C iff B satisfies
D and so a satisfies —C iff B satisfies —D.

If Ais (v)C then B is (v)D where C and D meet the conditions of
the theorem. If a'= a and B’ B and a'(v) = B'(v) then by induction
hypothesis a’ sat C iff B’ sat D. But then a sat (v)C iff for all @’ x «,
a' satisfies C iff for all '~ B, B’ satisfies D iff B satisfies (v)D. A
similar argument establishes that « satisfies 3vC iff B satisfies vD,
if Ais 3vC and B is 3 vD.

Intuitively, the formulas (x,)Fx;x; and (xq)Fxex; express the same
thing. In general, we will say that A and B are alphabetic variants of
one another if they are exactly alike except that occurrences of one
or more bound variables in A are replaced by corresponding oc-
currences of bound variables in B. By corresponding occurrences we
mean to require that all free variables of A are also free in B and that
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distinct bound variables of A are replaced by distinct bound variables
in B.

EXERCISE 4. Which of the following are alphabetic variants of
(x1)(x3) Fx1x,x5? (x)(xg) Fx1x,x4 (x4)(x3) Fx 4,5

(x)(x3) Fx1x4X3 (xD(x) Fxx,x, (x)(x) Fx 1 x,%,.

EXERCISE 5. Show that if A and B are alphabetic variants of one
another, a sequence satisfies A iff it satisfies B.

We often want to show, that a formula or set of formulas has a
model. We now prove an important theorem which will be a basic tool
throughout the book and we will give two applications. We are going
to define a particular type of set of formulas, Henkin sets, and we will
prove that every Henkin set has a model. Then to show that a given
set of formulas has a model, it will only be necessary to show that the
set in question is a subset of some Henkin set. The definition of a
Henkin set is closely modeled on the definition of satisfaction in a
model.

I’ is a Henkin set iff

(a) for all A either AET" or —AET

(b) forno A, AEIl' and —A€T

(c) forall B and A, (AAB)ET iff AETl and BET

(d) for all B and A, AvB)eTl iff A€TI'or BET

(e) forall Band A, ( ADB)eETl iff A#I'or BET

(f) If A€ET, then all formulas which are alphabetic variants of A

are in I’
(g) for all A, v, (v)AET iff, for all terms t, A€
(h) for all A and v, (3v)A €I iff for some term t, AJET

EXERCISE 6. Let (D, I) be a model in which every element of the
domain is assigned to some constant. Show that for any a, {A: «a

satisfies A in (D, I)} is a Henkin set.

EXERCISE 7. Let I' be a set of formulas such that



