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PREFACE

A highly successful Symposium on Transcendental Number The-
ory was held under the auspices of the London Mathematical Society at
the University of Durham in July, 1986, and the present volume is an
account of the proceedings of that meeting. Some fifty mathematicians
were present, including most of the leading specialists in the field, and the
lectures reflected the remarkable research activity that has taken place
in this area in recent years. Indeed, as became apparent, the evolution of
transcendence, since the 1960s, into a fertile theory with numerous and
widespread applications has been one of the most exciting and impor-
tant developments of modern mathematics. The conference programme,
though comprehensive, was intended to be in no way overcrowded, and
it was particularly aimed to create a relaxed atmosphere for the free
exchange of ideas. This seems to have worked out well; in fact much
valuable material was presented for future study and some original the-
orems were obtained through informal collaboration during the meeting
itself. The invited participants from the USSR, were alas unable to come
to Durham but they communicated reports subsequently and the edi-
tor is grateful to them and indeed to all the distinguished authors for
contributing so admirably to this volume.

A conference with a similar theme was held in Cambridge some ten
years ago and the proceedings were published under the title Transcen-
dence Theory: Advances and Applications (Academic Press, 1977); the
present work forms a natural sequel. Again, many papers are concerned
with the theory of linear forms in the logarithms of algebraic numbers. In
particular, the memoirs of Wiistholz and of Philippon and Waldschmidt
both contain definitive results in this context; they eliminate a second
order factor from the inequalities that I established at the time of the
meeting in Cambridge, and the arguments rest ultimately on the spec-
tacular progress that has been made in recent years, most notably by
Wiistholz, concerning multiplicity estimates on group varieties. Studies
in the area were initiated by Nesterenko and some new related estimates
are given in his paper here. The articles of Bertrand and of Masser il-
luminate other aspects of proofs in this field, highlighting, for instance,
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the extensive connections with Kummer theory and elliptic curves. Links
with the classic works of Gelfond and Schneider are described in the pa-
pers of Feldman and of Waldschmidt, and the current status of the p-adic
theory is discussed by Kunrui Yu.

Another major topic is the application of transcendence theory to
the study of Diophantine equations. Here the very substantial paper
on S-unit equations by Evertse, Gyory, Stewart and Tijdeman, and the
associated work on decomposable form equations by Evertse and Gyory,
are particularly welcome. There are, moreover, valuable articles on ex-
ponential Diophantine equations by Shorey, on the Thue equation by
Schmidt, and on equations over function fields by Mason and by Brindza.
The article by Baker and Stewart also relates to Diophantine equations;
it is shown that the theory of linear forms in logarithms can be greatly

streamlined in certain instances so as to yield surprisingly good numer-
ical bounds.

A subject that has plainly attracted a great deal of research in recent
years is the transcendence theory of classical functions, with particular
interest focused on hypergeometric functions, on E-functions and on G-
functions. The excellent papers by Beukers, Beukers and Wolfart, Ga-
lochkin, Shidlovsky and Sprindzuk all cover aspects of this topic. They
refer to many recent results, and, taken together, they provide the most
complete survey of the field available to date.

Furthermore, this by no means exhausts the range of material that
can be found here. Indeed, the paper of Bernik is concerned with the
metrical theory of transcendence, an area to which he has made some
striking advances; the paper of Brownawell is concerned with the remark-
able relation between Hilbert’s irreducibility theorem and transcendence;
the paper of Erdos is concerned with the questions of irrationality and
transcendence; the paper of Loxton is concerned with automata and
transcendence and, in particular, with new problems connected with the
celebrated Mahler method; the paper of Odoni is concerned with mod-
ular forms and transcendence and furnishes the answer to a question
of Serre; and the paper of Schinzel continues his fine series of studies
on reducibility of polynomials and shows that there is a useful role for
transcendence here too. It seems probable that the work as a whole will
be of considerable influence in determining the future direction of the
theory.

The Symposium was funded by a grant from the Science and Engi-
neering Research Council and this support is acknowledged with grati-
tude. My colleague, Dr R. C. Mason handled all the domestic and finan-
cial arrangements and there is no doubt that the success of the meeting
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was due in no small measure to his excellent work. The co-operation
of Prof. P. Higgins and indeed of all our mathematical colleagues in
Durham was invaluable, and particular thanks should be expressed to
the Bursar and his staff at Grey College for their helpfulness through-
out. Thanks are also due to Dr A. Harris for generously taking on the
task of translating articles from Russian into English, to Prof. J. W. S.
Cassels for additional advice in this respect, and to Dr D. Tranah of
Cambridge University Press for his kind and patient assistance at all
stages of production of this volume.

Cambridge, 1987 A. B.

Added in proof. It is with much sadness that the editor records here
the death of Prof. V. G. Sprindzuk in July, 1987. His passing is a great
loss to mathematics, and we shall remember especially his important
contributions to Transcendence Theory.
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ON EFFECTIVE APPROXIMATIONS TO
CUBIC IRRATIONALS

A. Baker and C. L. Stewart*

1. Introduction

The problem of obtaining effective measures of irrationality for al-
gebraic irrationals has recently attracted considerable attention. The
first result in this field was discovered by Baker [1], [2] in 1964. He used
properties of hypergeometric series to obtain effective results for certain
fractional powers of rationals. It was shown, in particular, that for all
rationals p/q with ¢ > 0 we have

a——‘>i, (1)

where a = \S’/f, ¢ =107% and k = 2.955. A similar result was established
for instance for & = /19 with ¢ = 10~° and « = 2.56. This work
was recently refined by Chudnovsky [11]; by a careful study of the Padé
approximants occurring in the hypergeometric method he obtained more
precise values for k and consequently he was able to deal with a wider
range of algebraic numbers. Chudnovsky left the values for ¢ occurring in
his results unspecified but these have recently been established in some
special cases by Easton [13]. Easton has shown in particular that (1)
holds with a = ¥/28, ¢ = 7.5 x 10~7 and x = 2.9.

The results above improved upon the relatively crude inequality of
Liouville established in 1844 to the effect that (1) holds for any algebraic
number a, where k = n, n > 1, the degree of a and c is an effectively
computable positive number depending only on a. The first general
effective improvement on Liouville’s theorem was obtained by Baker (3]
in 1968 using the theory of linear forms in the logarithms of algebraic

* The research of the second author was supported in part by Grant
A3528 from the Natural Sciences and Engineering Research Council of
Canada.



2 APPROXIMATIONS TO CUBIC IRRATIONALS

numbers. A more precise version of the result was obtained subsequently
by Feldman [14] and an explicit formulation of the theorem has recently
been given by Gyéry and Papp [15]. In the present paper we shall
sharpen the result of Gydry and Papp in the case of cube roots of integers.
We shall prove the following result.

Theorem 1. Let a be a positive integer not a perfect cube, and let
a = ¥a. Further let € be the fundamental unit in the field Q(Y/a). Then
(1) holds for all rational numbers p/q, ¢ > 0, with ¢ = 1/(3ac;) and
k =3 —1/cz, where

¢ = (5010g log ¢)2’ c2 = 1012 loge. (2)

Here Q denotes, as usual, the field of rational numbers and by the
fundamental unit € in Q(¥/a) we mean the smallest unit in the field
larger than 1. Note that some authors adopt the alternative convention
that the fundamental unit lies between 0 and 1. The result of Gydry and
Papp mentioned above yields a theorem similar to Theorem 1 but with

c2 = 300°%° log e(log log ¢)? (3)

and with a value for c; slightly greater than (40a)®e. In both (2) and
(3) we have made use of the fact, established in §2 below, that loge > 1
for all fields Q(+/a). Although our value for ¢z improves substantially on
(3), the value for & that it furnishes is far from the exponent 2+6, § > 0,
occurring in the Thue-Siegel-Roth theorem. As is well known the latter
theorem is ineffective, that is, it does not provide an explicit value for the
constant ¢ in (1). But Bombieri [8] and Bombieri and Mueller [9] have
recently shown that in certain special cases effective results can in fact
be derived from the Thue-Siegel method. Nevertheless the restrictions
attaching to a in their work are very stringent at present.
The inequality established in Theorem 1 is essentially equivalent to
an upper bound for the solutions of the Diophantine equation
2 —ay® =n. (4)

We have the following result.

Theorem 2. Let a and n be positive integers with a not a perfect cube.
Then all solutions in integers  and y of (4) satisfy

max(jz|, lyl) < (e1n)®,
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where ¢y and ¢, are given by (2).

In order to derive Theorem 1 from Theorem 2 we denote by p/q,
g > 0, any rational number and we suppose that |@ — p/q| < ¢; then
Ip/q| < a + ¢, whence

lo® + a(p/q) + (p/9)?| < 3a® + 3ac + c* < 3a.

This gives
la — (p/9)*| < 3a|a — p/q|. (5)

We now apply Theorem 2 with n = |p® — a¢®| and conclude that ¢ <
(c1n)®* whence n > (1/¢1)¢*/*>. By (5) we have |ox —p/q| > n/(3ag®)
and our result follows.

The proof of Theorem 2 is based essentially on the methods of [3]
and [4]. In particular we reduce the problem to the study of a linear form
in three logarithms and we ultimately establish the bound 2-10'2 log(c, n)
for the size of the integer coefficients in that form. OQur exposition will
follow the general pattern of the earlier papers but we shall use a simpli-
fied auxiliary function, and also a more efficient extrapolation procedure
to which Kummer theory can be applied directly. The work here to-
gether with the technique of Baker and Davenport [6] would enable the
complete list of solutions of (4) to be computed for any moderately sized
a and n. Indeed we have loge < (0.37)d'/?(log d)? where d is the abso-
lute value of the discriminant of Q(¥/a) (see [18]); thus, since d < 27a?
we obtain, for a > 3,

logc; < (50logd)?loge < (37loga)a.

Hence if, for example, a < 10® and logn < 10!° then the coefficients of
the logarithms in the linear form will have sizes at most 1025.

As a particular instance of Theorem 1 we take a = ¥/5; this is the
smallest cube root not covered by the papers employing the hypergeo-
metric method. Then € = 41 + 24a + 14a? (see [10], Table 2, p. 270) and
loge < 5. Hence we conclude that (1) holds with ¢ = 10~12900 554

Kk = 2.9999999999998.

We should like to express our thanks to Professor D. Djokovic for
his generous assistance in the computational work referred to in §3. The
latter was carried out while the first author was visiting the University
of Waterloo and he is grateful for their hospitality.
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2. Preliminary lemmas

We shall require modified forms of two classical lemmas in transcen-
dence theory. First we obtain the following sharpening of Lemma 4 of
Baker and Stark [7].

Lemma 1. Suppose that a, B are elements of an algebraic number field
and that for some positive integer p we have a = BP. If a, b are the
leading coefficients in the field polynomials defining a, B respectively then
b< allr,

Here the field polynomials are, as usual, powers of the minimal
polynomials with degree D, where D denotes the degree of the field.
Lemma 4 of [7] gives the weaker inequality b < aP/?, where a denotes
any non-zero integer such that aa is an algebraic integer.

Proof. Let a(V,...,a(P) and BV, ..., B(P) be the field conjugates of
and S respectively. Then b is the least positive integer such that

f(z) = bz — BD)...(z — BD)

has rational integer coefficients. We write

P
9(z) = a(z? — aW)...(z? — oD, h(z) = H f(ze?™iilp),

=1

Since, by hypothesis, a = 8P we have
Wg(z) = (—1)PP+qap(z).

Arguing as in [7] we deduce from the algebraic generalization of Gauss’
lemma that h(z) has relatively prime rational integer coefficients. But
g(z) also has rational integer coefficients and so b? divides a, whence
b < a!/? as required.

Secondly, we shall establish a version of Siegel’s lemma appropriate
to our work here. We shall adapt the result of Dobrowolski [12] so as to
deal with linear forms with arbitrary algebraic coefficients, not merely
algebraic integers. Obviously it would suffice to multiply through each
equation by a suitable common denominator but this would be too crude
for our purpose. In order to state the lemma, we define K to be an
algebraic number field with degree n over Q and we let 04, ...,0, be the
embeddings of K in the complex numbers. Further we signify by b
1<2< N,1<j <M, elements of K such that for each j not all b

17y
ijy
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1 <: < N, are zero. We now define cj, 1 < j < M, to be a positive
integer such that

cjo1(biy,;) ... on(bi,,;)

is an algebraic integer for all choices of i, ..., ip.

Lemma 2. If N > nM then the system of equations
N
Zbij$s=0, 1<;< M,
i=1

has a solution in rational integers Z1,...,ZN, not all 0, with absolute
values at most

Y = (2V2(N + 1)z1/ (M) M/(N=nM)

where

M n
7z = H(CJ' I‘I:Il m:ax|ak(b.-j)|).

j=1

Proof. The proof follows almost verbatim that of Dobrowolski [12]. the
main idea is to select rational integers z;,... ,ZN by the box principle
such that

lchK/Q (Z b,‘j.‘t,‘)l < 1, 1 S] < M.

This differs from [12] by virtue of the presence of ¢j; our definition of
¢; ensures that the expression on the left of the above inequality is a
rational integer. The only significant modification in the proof concerns
the quantity

i 1/n
Cj = (Cj H m‘p.xlak(bgj)l)
k=1
which now includes c;. This leads to the definition
¢ = (YN z)/"Mg;,

which gives

2V2(N +1)YC; — ¢, =0
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as in [12]. Further, as there, we note that C; > 1 and hence also Y > 1;
this follows from our definition of c¢; and the assumption that, for each
Jj, not all b;; are zero.t

We now record three lemmas that will be needed later. Lemma 3 is
classical Kummer theory; for a proof see Baker and Stark [7]. Lemma
4 is a famous result of Delaunay and Nagell; for a proof see Nagell [17].
Lemma 5 is due to Ljunggren [16].

Lemma 3. Let ay,...,a, be non-zero elements of an algebraic number
field K and let ai/’,...,a:,/_’l denote fized pth roots for some prime
p. Further, let K' = K(al/?,...,al/?)). Then either K'(a}/?) is an
extension of K' of degree p or we have

I 11 Jn-1
an =o' ...a,; 9

for some v in K and some integers ji,...,Jn—1 with 0 < j, < p.

Lemma 4. Let a be a positive integer, not a perfect cube. The equation

2 —ayd =1

has at most one solution in integers z, y with y # 0 and, for this, r—yJa
is given by either 1/e or 1/€2, where € is the fundamental unit of Q(/a)
as in §1.

Lemma 5. Let A, B, C be positive integers with C =1 or C = 3 and
suppose that A and B are > 1 when C = 1. Suppose further that AB is
not divisible by 3 when C = 3. Then the equation

Az + By* =C

has at most one solution in integers z, y and for this, C™!(z \a//_l+y\7_é)3
is either 1/n or 1/n% where 7 is the fundamental unit in Q(/(AB?)).

The only ezception is the equation 2z3 + y* = 3 which has two solutions,
namely =y =1and z =4,y = -5.

Note that if the condition in Lemma 5 that AB be not divisible by
3 when C = 3 is violated then the equation reduces to an equation with

t Professor Vaaler has pointed out to us that the result can also be
obtained from Theorem 9 of Bombieri and Vaaler, “On Siegel’s Lemma”,
Invent. Math. T3 (1983), 11-32, and in fact with v/N in place of
2V2 (N +1).



