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Preface

This book is about formal specification and design techniques, including both
algebraic specifications and state-based specifications.

The construction and maintenance of complex software systems is a difficult
task and although many software projects are started with great expectations
and enthusiasm, it is too often the case that they fail to achieve their goals
within the planned time and with the given resources. The software often
contains errors; attempts to eliminate the errors give rise to new errors, and so
on. Moreover, the extension and adaptation of the software to new tasks turns
out to be a difficult and tedious task, which seems unsuitable for scientific
methods.

This unsatisfactory situation can be improved by introducing precise spec-
ifications of the software and its constituent parts. When a piece of software
P has a precise specification S say, then ‘P satisfies S’ is a clear statement
that could be verified by reasoning or that could be falsified by testing; users
of P can read S and rely on it and the designer of P has a clearly formulated
task. When no precise specifications are available, there are hardly any clear
statements at all, for what could one say: ‘it works’ or more often ‘it almost
works’? Without precise specifications, it becomes very difficult to analyse
the consequences of modifying P into P’, for example, and to make any clear
statements about that modification. Therefore it is worthwhile during the
software development process to invest in constructing precise specifications of
well-chosen parts of the software system under construction. Writing precise
specifications turns out to be a considerable task itself. In many situations
the use of natural language, pictures and pseudo-code does not yield specifica-
tions of the required level of abstractness and precision. Formal specification
is an approach to writing precise specifications, building on concepts from
mathematical logic. During the past decades, much research and development
concerning formal specification techniques has been conducted. Well-known
results in this field are the techniques of ‘abstract data types’ and of ‘pre- and
postconditions’.

What is the role of ‘language’ in connection with formal specifications? One
can say that, in many respects, the practical progress in software engineering is
language-driven: it is hard to introduce methodological concepts unless these
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Xiv PREFACE

are concretely available as constructs in the language in use. This is a major
motivation behind the introduction of formal specification languages. In prac-
tice it is not enough to have good methodological concepts for writing formal
specifications: one needs a language as a vehicle. Throughout this book, the
language COLD-K is employed as a vehicle. COLD is an acronym for Com-
mon Object-oriented Language for Design. This book explains the constructs
offered by the language and shows how to use them. The use of formal speci-
fication techniques at certain well-chosen points in the design process is one of
the key factors — though certainly not the only one - in increasing the quality
of the software development process.

A formal specification language is a language whose constructs are derived
both from mathematical logic and from programming languages and which
has a precise syntax and semantics. If, furthermore the language allows for
descriptions at several levels of abstraction, it is called a wide-spectrum specifi-
cation language. The language employed in this book is such a wide-spectrum
specification language; other wide-spectrum specification languages are VDM,
CIP and RSL. One could also call it a design language to emphasise that the
language can be used for recording a software system in its intermediate stages
of design, ranging from specification to implementation.

Many techniques such as ‘abstract data types’, ‘abstraction functions’, ‘in-
variants’, ‘pre- and postconditions’, ‘modular specification’ and ‘information
hiding’ can be explained using the constructs offered by COLD-K [1]. The lan-
guage is in the tradition of VDM [2, 3] and Z [4, 5], but has been influenced by
ASL [6], Module Algebra [7], Harel’s dynamic logic [8], Scott’s E-logic [9, 10]
and object-oriented languages. Furthermore it contains a novel notion of ‘de-
sign’ comparable with the structuring mechanisms provided by e.g. HOOD
(11].

The language was developed at the Philips Research Laboratories in Eind-
hoven within the framework of ESPRIT project 432 (also known as METEOR).
It has been designed mainly by H.B.M. Jonkers, with technical contributions
from C.P.J. Koymans, G.R. Renardel de Lavalette and L.M.G. Feijs. The
fact that its well-formedness and semantics are defined mathematically guar-
antees that descriptions in the language leave no room for ambiguity and that
a high level of tool support can be provided. Actually, COLD-K is one out
of a sequence of language versions, in which it plays a special role: it is a
kernel language, serving as a point of departure in the further development of
the language. It is meant to be used as the kernel of user- and application-
oriented language versions, to be derived by syntactic extensions. All essential
semantic features are contained in this kernel language, as well as high level
constructs for modularisation, parameterisation and designs. It is important
to realise that this language is the forerunner of versions which are much more
user-friendly — at least from a syntactic point of view. Indeed, certain aspects
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of the language are somewhat Spartan, but for the purpose of this book this
is hardly a disadvantage.

One of the main goals of this book is to treat the basic concepts underlying
algebraic specification techniques. The book shows how algebraic specification
techniques can be effectively used in the software development process. Yet,
the approach of this book goes far beyond algebraic specifications: it shows
how algebraic and state-based techniques can be combined in an integrated
approach. The main motivation for using COLD-K is as follows. It is a
formal language, with a well-defined syntax and semantics; it can be used as
an algebraic specification language; furthermore, it is an integrated language,
unifying algebraic and state-based techniques.

The book is divided into three parts. The first part is concerned with
algebraic specifications, the second part with state-based specifications. The
first and the second part have essentially the same structure, beginning with an
introduction of the basic concepts followed by methodological guidelines about
setting up a specification. After that the the topics of large specifications as
well as implementation strategies are treated — each in one chapter. In the
third part we have three chapters, each of a different nature. In Chapter 9 a
number of existence proofs and theoretical discussions are presented. These
are related to the earlier chapters, but are not presented there in order not to
distract too much from the main line of these chapters. In Chapter 10 a number
of additional language constructs are presented informally. In the last chapter
(Chapter 11) a pictorial representation of module structures is explained as
well as a systematic approach for putting specifications and implementations
together in a top-level language construct called design. The structure of the
book is as follows.

I Introducing the basic concepts,
Setting up algebraic specifications,
Structuring algebraic specifications,

Implementing algebraic specifications.

—
p—

From algebras to states,

Setting up state-based specifications,
Structuring state-based specifications,
Implementing state-based specifications.

P
L)
—t

Theoretical topics,
Additional language constructs,
Towards large systems.

HeE gt R

[Srguyw—y

Since the goal of the book is not to serve as a language reference manual, we
decided not to present all language features. Instead of that we restricted
ourselves to the most essential aspects of the language. These are covered
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in depth by the Chapters 1-9, and additional language features as well as
constructs for building systems from components are dealt with briefly and
informally in Chapters 10 and 11. The syntax of the full language COLD-K is
contained in Appendix A.

This book developed from the course material for a post-graduate course
given by the authors at the Technical University of Eindhoven and at the
University of Nijmegen. Special thanks go to J.A. Bergstra, R.J. Bril and
C.A. Middelburg for their contributions, reviewing and discussions supporting
the creation of this text.
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