

FORMAL SPECIFICATION AND DESIGN

L.M.G. FEIJS & H.B.M. JONKERS
Philips Research Laboratories
Eindhoven

S CAMBRIDGE
@5y UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521434577

© Cambridge University Press 1992

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1992
This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-43457-7 hardback
ISBN-10 0-521-43457-2 hardback

ISBN-13 978-0-521-43592-5 paperback
ISBN-10 0-521-43592-7 paperback

FORMAL SPECIFICATION AND DESIGN

Cambridge Tracts in Theoretical
Computer Science

Managing Editor Professor C.J. van Rijsbergen,
Department of Computing Science, University of Glasgow

Editorial Board

S. Abramsky, Department of Computing Science, Imperial College of Science
and Technology

P.H. Aczel, Department of Computer Science, University of Manchester

J.W. de Bakker, Centrum voor Wiskunde en Informatica, Amsterdam

J.A. Goguen, Programming Research Group, University of Oxford

J.V. Tucker, Department of Mathematics and Computer Science,

University College of Swansea

Titles in the series

1. G. Chaitin Algorithmic Information Theory

2. L.C. Paulson Logic and Computation

3. M. Spivey Understanding Z

4. G. Revesz Lambda Calculus, Combinators and Functional Programming

5. A. Ramsay Formal Methods in Artificial Intelligence

6. S. Vickers Topology via Logic

7.J-Y. Girard, Y. Lafont & P. Taylor Proofs and Types

8.J. Clifford Formal Semantics & Pragmatics for Natural Language Processing
9. M. Winslett Updating Logical Databases

K. McEvoy & J.V. Tucker (eds) Theoretical Foundations of VLSI Design
T.H. Tse A Unifying Framework for Stuctured Analysis and Design Models
G. Brewka Nonmonotonic Reasoning

S.G. Hoggar Mathematics for Computer Graphics

S. Dasgupta Design Theory and Computer Science

17. J.C.M. Baeten (ed) Applications of Process Algebra

18. J.C.M. Baeten & W. P. Weijland Process Algebra

23. E.-R. Olderog Nets, Terms and Formulas

26. P.D. Mosses Action Semantics

27. W.H. Hesselink Programs, Recursion and Unbounded Choice

29. P. Giirdenfors (ed) Belief Revision

30. M. Anthony & N. Biggs Computational Learning Theory

33. E.G. Manes Predicate Transformer Semantics

34. F. Nielson & H.R. Nielson Two Level Functional Languages

35. L. Feijs & H. Jonkers Formal Specification and Design

10.
11.
12.
14.
15.

Preface

This book is about formal specification and design techniques, including both
algebraic specifications and state-based specifications.

The construction and maintenance of complex software systems is a difficult
task and although many software projects are started with great expectations
and enthusiasm, it is too often the case that they fail to achieve their goals
within the planned time and with the given resources. The software often
contains errors; attempts to eliminate the errors give rise to new errors, and so
on. Moreover, the extension and adaptation of the software to new tasks turns
out to be a difficult and tedious task, which seems unsuitable for scientific
methods.

This unsatisfactory situation can be improved by introducing precise spec-
ifications of the software and its constituent parts. When a piece of software
P has a precise specification S say, then ‘P satisfies S’ is a clear statement
that could be verified by reasoning or that could be falsified by testing; users
of P can read S and rely on it and the designer of P has a clearly formulated
task. When no precise specifications are available, there are hardly any clear
statements at all, for what could one say: ‘it works’ or more often ‘it almost
works’? Without precise specifications, it becomes very difficult to analyse
the consequences of modifying P into P’, for example, and to make any clear
statements about that modification. Therefore it is worthwhile during the
software development process to invest in constructing precise specifications of
well-chosen parts of the software system under construction. Writing precise
specifications turns out to be a considerable task itself. In many situations
the use of natural language, pictures and pseudo-code does not yield specifica-
tions of the required level of abstractness and precision. Formal specification
is an approach to writing precise specifications, building on concepts from
mathematical logic. During the past decades, much research and development
concerning formal specification techniques has been conducted. Well-known
results in this field are the techniques of ‘abstract data types’ and of ‘pre- and
postconditions’.

What is the role of ‘language’ in connection with formal specifications? One
can say that, in many respects, the practical progress in software engineering is
language-driven: it is hard to introduce methodological concepts unless these

Xiii

Xiv PREFACE

are concretely available as constructs in the language in use. This is a major
motivation behind the introduction of formal specification languages. In prac-
tice it is not enough to have good methodological concepts for writing formal
specifications: one needs a language as a vehicle. Throughout this book, the
language COLD-K is employed as a vehicle. COLD is an acronym for Com-
mon Object-oriented Language for Design. This book explains the constructs
offered by the language and shows how to use them. The use of formal speci-
fication techniques at certain well-chosen points in the design process is one of
the key factors — though certainly not the only one - in increasing the quality
of the software development process.

A formal specification language is a language whose constructs are derived
both from mathematical logic and from programming languages and which
has a precise syntax and semantics. If, furthermore the language allows for
descriptions at several levels of abstraction, it is called a wide-spectrum specifi-
cation language. The language employed in this book is such a wide-spectrum
specification language; other wide-spectrum specification languages are VDM,
CIP and RSL. One could also call it a design language to emphasise that the
language can be used for recording a software system in its intermediate stages
of design, ranging from specification to implementation.

Many techniques such as ‘abstract data types’, ‘abstraction functions’, ‘in-
variants’, ‘pre- and postconditions’, ‘modular specification’ and ‘information
hiding’ can be explained using the constructs offered by COLD-K [1]. The lan-
guage is in the tradition of VDM [2, 3] and Z [4, 5], but has been influenced by
ASL [6], Module Algebra [7], Harel’s dynamic logic [8], Scott’s E-logic [9, 10]
and object-oriented languages. Furthermore it contains a novel notion of ‘de-
sign’ comparable with the structuring mechanisms provided by e.g. HOOD
(11].

The language was developed at the Philips Research Laboratories in Eind-
hoven within the framework of ESPRIT project 432 (also known as METEOR).
It has been designed mainly by H.B.M. Jonkers, with technical contributions
from C.P.J. Koymans, G.R. Renardel de Lavalette and L.M.G. Feijs. The
fact that its well-formedness and semantics are defined mathematically guar-
antees that descriptions in the language leave no room for ambiguity and that
a high level of tool support can be provided. Actually, COLD-K is one out
of a sequence of language versions, in which it plays a special role: it is a
kernel language, serving as a point of departure in the further development of
the language. It is meant to be used as the kernel of user- and application-
oriented language versions, to be derived by syntactic extensions. All essential
semantic features are contained in this kernel language, as well as high level
constructs for modularisation, parameterisation and designs. It is important
to realise that this language is the forerunner of versions which are much more
user-friendly — at least from a syntactic point of view. Indeed, certain aspects

PREFACE XV

of the language are somewhat Spartan, but for the purpose of this book this
is hardly a disadvantage.

One of the main goals of this book is to treat the basic concepts underlying
algebraic specification techniques. The book shows how algebraic specification
techniques can be effectively used in the software development process. Yet,
the approach of this book goes far beyond algebraic specifications: it shows
how algebraic and state-based techniques can be combined in an integrated
approach. The main motivation for using COLD-K is as follows. It is a
formal language, with a well-defined syntax and semantics; it can be used as
an algebraic specification language; furthermore, it is an integrated language,
unifying algebraic and state-based techniques.

The book is divided into three parts. The first part is concerned with
algebraic specifications, the second part with state-based specifications. The
first and the second part have essentially the same structure, beginning with an
introduction of the basic concepts followed by methodological guidelines about
setting up a specification. After that the the topics of large specifications as
well as implementation strategies are treated — each in one chapter. In the
third part we have three chapters, each of a different nature. In Chapter 9 a
number of existence proofs and theoretical discussions are presented. These
are related to the earlier chapters, but are not presented there in order not to
distract too much from the main line of these chapters. In Chapter 10 a number
of additional language constructs are presented informally. In the last chapter
(Chapter 11) a pictorial representation of module structures is explained as
well as a systematic approach for putting specifications and implementations
together in a top-level language construct called design. The structure of the
book is as follows.

I Introducing the basic concepts,
Setting up algebraic specifications,
Structuring algebraic specifications,

Implementing algebraic specifications.

—
p—

From algebras to states,

Setting up state-based specifications,
Structuring state-based specifications,
Implementing state-based specifications.

P
L)
—t

Theoretical topics,
Additional language constructs,
Towards large systems.

HeE gt R

[Srguyw—y

Since the goal of the book is not to serve as a language reference manual, we
decided not to present all language features. Instead of that we restricted
ourselves to the most essential aspects of the language. These are covered

xvi PREFACE

in depth by the Chapters 1-9, and additional language features as well as
constructs for building systems from components are dealt with briefly and
informally in Chapters 10 and 11. The syntax of the full language COLD-K is
contained in Appendix A.

This book developed from the course material for a post-graduate course
given by the authors at the Technical University of Eindhoven and at the
University of Nijmegen. Special thanks go to J.A. Bergstra, R.J. Bril and
C.A. Middelburg for their contributions, reviewing and discussions supporting
the creation of this text.

Contents

Preface

I Algebraic specification

1 Introducing the basic concepts

1.1 Imtroduction e
1.2 What is a(n algebraic) specification?
1.3 Names and signatures.
1.4 Algebras e
1.5 Flat algebraic specifications
1.6 Terms and assertions
1.7 Undefinedness and strictness
1.8 Example: specification of switches
1.9 Initial algebras
1.10 Example: specification of pairs of switches
1.11 Example: specification of natural numbers

Setting up algebraic specifications

21 Introdochion « « « s s o v s v w we w s s e moa p s e oy ow s
2.2 Inductive predicate definitions oL
23 Horneclauses . . « o« s s 5 66 %6 5 5 5 o.% 65 0 58 53 04 83 8
2.4 Inductive function definitions
2.5 Proof obligations and applications
2.6 Consistency and categoricity,
2.7 How to set up an algebraic specification.
2.8 Example: specification of queues.
2.9 Example: specification of stacks
2.10 Example: specificationofbags

2.11 Example: specification of symbolic expressions

xiii

vi CONTENTS

3 Structuring algebraic specifications 59
3] Imiroduaplion ; s « s s s cnE v e s B s EE VE w s B L E v 59
32 Flat schethigh . « « « » ¢ » ar v g o 8 5 0 5 v 5 Wi ¥ 0 B35 5 B 08 61
33 Exporfschemes . : » « « a5 eon 66 ¢ 50 5% w6 5w o+ 805 a5 62
34 Importschemes00 innnas 64
3.5 Renamingschemes 66
3.6 Abbreviationschemes. 69
3.7 Semantics of normal-form specifications 70
3.8 Hiddennames 73

4 Implementing algebraic specifications 79
41 DtTodudhion . o « « s ¢ » 5 % 5 5 55 8 ¢ 5«0 5w B owH Db 88 79
42 EBspresgiong . c s« o » 2 2 0 5 % 5% 5 s 55 0 % & 4% wd B 5w AW 80
4.3 Term interpretation of expressions 82
44 Declarations : s « s v ¢ s s s 55 6w n s s s R v w b B S AL B A B 83
4.5 Survey of assertions and expressions 85
4.6 Algorithmic predicate definitions 86
4.7 Algorithmic function definitions 87
4.8 From inductive to algorithmic definitions 88
4.9 Implementing an algebraic specification 93
4.10 Example: implementation of sets 94

II State-based specification 111

5 From algebras to states 113
B Bifrodmehion . « » s s s s s s s B BB B AR R m I B I F e w A A 113
5.2 What is a state-based specification? 114
5.3 Procedure names and class signatures 116
5.4 Statesasalgebras 118
5.5 Classes e e e 120
5.6 Introducing variables 123
5.7 Procedure definitions L. 125
5.8 Comparison with imperative programs 127
5.9 From predicate logic to dynamic logic 129
5.10 Classes and specifications 138

6 Setting up state-based specifications 143
B Kindeof axioms . - o« s s s s s s as s s s s smwga msw vus 143
6.2 Example: specification of trafficlights 144

6.2.1 Propertiesof allstates 145
6.2.2 Invariance properties 147

6.2.3 Properties of the initial state. 149

8.8

CONTENTS
6.2.4 Properties of state transitions
6.3 Example: specification of attributes
6.4 Example: specificationof buffers
6.5 Example: specificationof adisplay
6.6 How to set up an axiomatic state-based class description . .
6.7 Discussion it e e e
7 Structuring state-based specifications
7.1 Introduction
7.2 Example: specification of a database
7.2.1 Tuples and relations
722 Databaseschemas.
7.2.3 The contents of a database
724 Tuplevariables
7.2.5 Expressions and qualifications
7.2.6 Well-formedness
7.2.7 Semanticsof queries
7.2.8 Example of an interactive session
7.3 Discussion
8 Implementing state-based specifications
8.1 Introduction
82 Statements.
8.3 Algorithmic procedure definitions
8.4 Example: implementation of division
8.5 Towards an implementation strategy
8.6 The implementation strategy
8.7 Example: implementation of a line editor
8.7.1 Specifyingthesystem.
8.7.2 Documenting a building block
8.7.3 Choosing a representation s w s m
8.7.4 Adding display-oriented features
8.7.5 Implementing the display-oriented features
8.7.6 TranslationtoC
8.7.7 Executing the program

Discussion e

viil

IIT Advanced techniques

9 Theoretical topics
9.1 Introduction
9.2 Undefinedness revisited
9.3 Initial algebras
9.4 Horn clauses
9.5 Origin consistency
9.6 Comparing two types of models
9.7 The class concept revisited

10 Additional language constructs
10.1 Introduction
10.2 Liberal scope rules
10.3 Free definitions
10.4 Parameterisation
10.5 Abstraction schemes
10.6 Application schemes
10.7 Extending the normalization procedure
10.8 More complex parameter restrictions
10.9 Object creation and procedures with results
10.10Variable sort definitions
10.11Dependent definitions
10.12Example: specification of instances
10.13Unifying expressions and statements

11 Towards large systems
11.1 Introduction
11.2 Graphical representation of modules
11.3 Components and designs
11.4 Applications
11.5 Concluding remarks

Bibliography

A Syntax

A.1 General
A.2 Concrete syntax
A.3 Tokens
A.4 Keywords
A.5 Comments
A.6 Grammar
A.7 Operator priorities and associativities

CONTENTS

CONTENTS

A.7.1 Operators in renamings and signatures
A.7.2 Operators in assertions and expressions

B Standard library

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

Index

Booleans .

..............................

Natural numbers

Characters
Tuples . .
Finite sets
Finite bags

..............................

..............................

.............................

Finitesequences,

Finite maps

.............................

ix

315
316

317
317
319
321
322
323
325
327
329

332

X

LIST OF FIGURES

List of figures

Fig 1.1 Algebra with sort Set! and one object.cc.cou..... 5
Fig 1.2 Algebra with two sorts.ccoviiiiinriiiiiienenninnnnenn. 6
Fig 1.3 Signature of the specification of integers. 11
Fig 1.4 Signature of the specification of stacks. 12
Fig 1.5 Signature ¥ with two sort names Vand W. 14
Fig 1.6 Algebra with signature X.coiiiiiiiiiiiienennn... 14
Fig 1.7 Algebra where fM(z) is not defined. 21
Fig 1.8 Algebra with empty sort Switch.ccovvviiinin.... 23
Fig 1.9 Algebra with sort Switch and one object. 25
Fig 1.10 Algebra with sort Switch and three objects. 26
Fig 1.11 Algebra with sort Switch and two objects. 27
Fig 1.12 Algebra with empty sort Nat.ccovvirininnnennnn... 31
Fig 1.13 Natural numbers asamodel.ccovivniiininnn... 32
Fig 1.14 Non-standard model satisfying NAT1, NAT2, NAT3 and NAT4.32
Fig 2.1 Signature of the specification of queues. 45
Fig 2.2 Signature of the specification of stacks. 51
Fig 2.3 Signature of the specification of bags. 53
Fig 2.4 Signature of the specification of symbolic expressions. 55
Fig 3.1 Signature £; with sort names A,Band C. 71
Fig 3.2 Signature X, with sort names Aand B.ovnnnn. 71
Fig 3.3 Algebra with sorts A, Band C.cccoviiiiieinennnnnn.. 71
Fig 3.4 Algebra withsorts Aand B.cciiviiiiiiiinnnnnnn. 72
Fig 3.5 ForgettingCand gcovvvviiiiniininiininininnenannn. 72
Fig 3.6 Signature of the specification of sets. 75
Fig 4.1 Signature of the specification of lists.c..covunnn.. 94
Fig 4.2 Implementation of lists.ccooviiiiiiiiiineiiinn.... 106
Fig 5.1 Class Signature with sorts, functions and a procedure. 117
Fig 5.2 Signature ¥ with two sorts and two functions. 118
Fig 5.3 X-algebra withsorts Vand W.ccoiiviin.... 119
Fig 5.4 Class with five states.cooiiiiiiiiiiiiniiinann... 120
Fig 5.5 Class signature with procedures set and reset. 122
Fig 5.6 Signature with one sort and one function. 122
Fig 5.7 Class with procedures set and reset. 122
Fig 5.8 Class with procedures set and reset. 123
Fig 5.9 Class with procedure set obtained by hiding. 140
Fig 6.1 Road crossing with traffic lights. 145
Fig 6.2 Gtate Dransibion. ...ewseswsssssssanssnonmsewss e sasmog s 565 55 150
Fig 6.3 State transition with intermediate state. 151
Fig 6.4 Buffer containing three items. 156
Fig 6.5 Display device with cursor and screen. 162

LIST OF FIGURES xi

Fig 7.1 Template of relation with two fields. 176
Fig 7.2 Relation with two fields.coooiiiiiiiiiininnnn... 176
Fig 7.3 Outcome of first retrieve command. 194
Fig 7.4 Outcome of second retrieve command. 195
Fig 7.5 Outcome of third retrieve command. 195
Fig 7.6 Sharing of the state-based description TYPING. 197
Fig 8.1 Template of an axiomatic state-based specification. 211
Fig 8.2 Template of an algorithmic state-based implementation. 212
Fig 8.3 Buffer with gap.coooiiiiiiiiiii i, 219
Fig 8.4 Buffer representing string "hello_world". 220
Fig 9.1 Signature L. with sort, constant and unary function. 246
Fig 9.2 Auto-bisimulation 45oovninriner e 261
Fig 10.1 Class signature with one sort and one procedure. 277
Fig 10.2 Class with dynamic object creation. 278
Fig 11.1 Graphical representation of CLASS D; ... D, END. 288
Fig 11.2 Nested import/export structure.coovvunnn... 289
Fig 11.3 Overview of the editor (first part).ccoovvvenn... 290

Fig 11.4 Overview of the editor (display-oriented features). 291

xii

LIST OF TABLES

List of tables

Table 1.1 Surveyofall terms.cooviiiiiiiiiiiiiiiinn... 17
Table 1.2 Survey of all assertions.coviviiiiniiiinnnnenn... 19
Table 3.1 Survey of all modular schemes. 60
Table 4.1 Survey of all expressions.ccoiviiiiiiiinenin... 81
Table 4.2 Kinds of predicates.ccoviiiiiiiiiiiiininnn.. 82
Table 4.3 Survey of all assertions.coiiiiiniinininninnnn. 85
Table 4.4 Survey of all expressions.cocvvieveiienennrnnn.n. 85
Table 5.1 Survey of predicate and function definitions. 125
Table 5.2 Survey of procedure definitions. 127
Table 5.3 Survey of all assertions.cccoviiiiiniinnninn... 136
Table 5.4 Survey of all expressions.coviiiiininennnn... 137
Table 7.1 Bottom-up construction of a large state-based specification. 171
Table 8.1 Survey of all statements.cccoviiiiinin.... 203
Table 8.2 EDITOR_SPEC as an instance of the general template. 217
Table 8.3 EDITOR_IMPL as an instance of the general template. 223
Table 10.1 Assertions and expressions with extended scope. 264
Table 10.2 Constructs where declarations in A extend to B. 264
Table 10.3 Constructs which are transparent for object names. 264
Table 10.4 Survey of all schemes.ccooiiiiiiiiinininn... 270
Table 10.5 Survey of sort definitions.cocoiviininnn... 278
Table 11.1 Survey of all components.c.covvivinininn... 292
Table: 1123 DORIRIN. v nwumwsmsmmems oomesn s s as s o ors s ek 5essd €191 258 292
Table A.7.10perators in renamings and signatures. 315

Table A.7.2Operators in assertions and expressions. 316

