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Preface

The present book is intended to be a systematic text on topological vector
spaces and presupposes familiarity with the elements of general topology and
linear algebra. The author has found it unnecessary to rederive these results,
since they are equally basic for many other areas of mathematics, and every
beginning graduate student is likely to have made their acquaintance. Simi-
larly, the elementary facts on Hilbert and Banach spaces are widely known
and are not discussed in detail in this book, which is mainly addressed to those
readers who have attained and wish to get beyond the introductory level.

The book has its origin in courses given by the author at Washington State
University, the University of Michigan, and the University of Tiibingen in
the years 1958-1963. At that time there existed no reasonably complete text on
topological vector spaces in English, and there seemed to be a genuine need
for a book on this subject. This situation changed in 1963 with the appearance
of the book by Kelley, Namioka et al. [1] which, through its many elegant
proofs, has had some influence on the final draft of this manuscript. Yet the
two books appear to be sufficiently different in spirit and subject matter to
justify the publication of this manuscript; in particular, the present book
includes a discussion of topological tensor products, nuclear spaces, ordered
topological vector spaces, and an appendix on positive operators. The author
is also glad to acknowledge the strong influence of Bourbaki, whose mono-
graph [7], [8] was (before the publication of Kothe [5]) the only modern
treatment of topological vector spaces in printed form.

A few words should be said about the organization of the book. There is a
preliminary chapter called “Prerequisites,” which is a survey aimed at
clarifying the terminology to be used and at recalling basic definitions and
facts to the reader’s mind. Each of the five following chapters, as well as the
Appendix, is divided into sections. In-each section, propositions are marked
u.v, where u is the section number, v the proposition number within the
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:cction. Propositions of special importance are additionally marked
" Theorem.” Cross references within the chapter are (u.v), outside the chapter
(r, u.v), where r (roman numeral) is the number of the chapter referred to.
Fach chapter is preceded by an introduction and followed by exercises. These
“* Exercises” (a total of 142) are devoted to further resuits and supplements, in
particular, to examples and counter-examples. They are not meant to be
worked out one after the other, but every reader should take notice of them
because of their informative value. We have refrained from marking some of
them as difficult, because the difficulty of a given problem is a highly subjective
matter. However, hints have been given where it seemed appropriate, and
occasional references indicate literature that may be needed, or at
least helpful. The bibliography, far from being complete, contains
(with few exceptions) only those items that are referred to in the text.

I wish to thank A. Pietsch for reading the entire manuscript, and A. L.
Peressini and B. J. Walsh for reading parts of it. My special thanks are
extended to H. Lotz for a close examination of the entire manuscript, and for
many valuable discussions. Finally, I am indebted to H. Lotz and ‘A. L.
Peressini for reading the proofs, and to the publisher for their care and

cooperation.
H. H.S.

Tiibingen, Germany
December, 1964
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PREREQUISITES

A formal prerequisite for an intelligent reading of this book ‘is familiarity
with the most basic facts of set theory, general topology, and linear algebra.
The purpose of this preliminary section is not to establish these results but -
to clarify terminology and notation, and to give the reader a survey of the
material that will be assumed as known in the sequel. In addition, some -of
the literature is pointed out where adequate information and further refer-
ences can be found.

Throughout the book, statements intended to represent definitions are
distinguished by setting the term being defined in bold face characters.

A. SETS AND ORDER

1. Sets and Subsets. Let X,Y be sets. We use the standard notations xe X
for “x is an element of X', X < Y (or Y = X) for *“ X is a subset of Y7,
X=Yfor “Xc Yand Yo X7 If (p) is a proposition in terms of given
relations on X, the subset of all x & X for which (p) is true is denoted by
{x € X: (p)x} or, if no confusion is likely to occur, by {x: (p)x}. x ¢ X means
“x is not an element of X”'. The complement of X relative to ¥ is the set
{xe Y: x¢ X}, and denoted by ¥ ~ X. The empty set is denoted by ¢ and
considered to be a finite set; the set (singleton) containing the single element
x is denoted by {x}. If (p,), (p,) are propositions in terms of given relations
on X, (p;)=>(p,) means “(p,) implies (p,)”, and (p,)+=(p,) means “(p,) is
equivalent with (p,)”". The set of all subsets of X is denoted by B(X).

2. Mappings. A mapping f of X into Y is denoted by f: X — Y or by
x — f(x). X is called the domain of £, the image of X under f; the range of /:
the graph of fis the subset G, = {(x,f(x)): x € X} of X x Y. The mapping of
the set *B(X) of all subsets of X into B(¥) that is associated with /, is also
denoted by f; that is, for any 4 < X we write f(A4) to denote the set

1



2 PREREQUISITES

{fx): xe A} = Y. The associated map of P(Y) into P(X) is denoted by
S thus for any B< Y, f~Y(B) = {xe X:f(x)e B}. If B={b}, we write
f7'(b) in place of the clumsier (but more precise) notation f~'({b}). If
fiX—>Y and g: Y >Z are maps, the composition map x— g(f(x)) is
denoted by g - /.

A map f: X — Y is biunivocal (one-te-one, injective) if f(x,) = f(x,) implies
X, = X,; it is onto Y (surjective) if f(X) = Y. A map f which is both injective
and surjective is called bijective (or a bijection).

Iff: X— Yisamapand A < X, the map g: A — Y defined by g(x) = f(x)
whenever x € A is called the restriction of f to 4 and frequently denoted by /,.
Conversely, fis called an extension of g (to X with values in V).

3. Families. 1f A is a non-empty set and X is a set, a mapping o — x(x)
of A into X is also called a family in X; in practice, the term family is used for
mappings whose domain A enters only in terms of its set theoretic properties
(i.e., cardinality and possibly order). One writes, in this case, x, for x(x) and
denotes the family by {x,: « € A}. Thus every non-empty set X can be viewed
as the family (identity map) x — x(x € X); but it is important to notice that
if {x,: @€ A}isafamily in X, then « # f does not imply x,# x;. A sequence
is a family {x,;ne N}, N = {1, 2, 3, ...} denoting the set of natural numbers.
If confusion with singletons is unlikely and the domain (index set) A is clear
from the context, a family will sometimes be denoted by {x,} (in particular, a
sequence by {x,}).

4. Set Operations. Let { X,: o € A} be a family of sets. For the union of this
family, we use the notations J{X,: xe€ A}, (J X,, or briefly {J X, if the

ae A

index set A is ¢lear from the context. If {X,: n€ N} is a sequence of sets we
k

5
also write |J X,, and if {X|,..., X, ] is a finite family of sets we write [J X, or
1 . 1

X, U X, u ...u X, Similar notations are used for intersections and Car-
tesian products, with |J replaced by () and [] respectively. If {X,:a € A} is
a family such that X, = X for all € A, the product [ [, X, is also denoted by
XA,

If R is an equivalence relation (i.e., a reflexive, symmetric cransitive binary
relation) on the set X, the set of equivalence classes (the quotient set) by R is
denoted by X/R. The map x — % (also denoted by x — [x]) which orders to
each x its equivalence class £ (or [x]), is called the canonical (or quotient) map
of X onto X/R.

5. Orderings. An ordering (order structure, order) on a set X is a binary
relation R, usually denoted by <, on X which is reflexive, transitive, and anti-
symmetric (x <y and y £ x imply x = y). The set X endowed with an order
< is called an ordered set. We write y = x to mean x < y, and x < y to mean
x < y but x # y (similarly for x > ). If R, and R, are orderings of X, we say
that R, is finer than R, (or that R, is coarser than R;) if x(R,)y implies
X(R,)y. (Note that this defines an ordering on the set of all orderings
of X.)
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Let (X, <) be an ordered set. A subset 4 of X is majorized if there exists
ay € X such that a < a, whenever ae 4; a, is a majorant (upper bound) of A.
Dually, A4 is minorized by a, if a, < a whenever a € 4; then a, is 2 minorant
(lower bound) of 4. A subset 4 which is both majorized and minorized, is
called order bounded. If 4 is majorized and there exists a majorant a, such
that a, < b for any majorant b of A, then a, is unique and called the supremum
(least upper bound) of A; the notation is a, = sup A. In a dual fashion, one
defines the infimum (greatest lower bound) of A4, to be denoted by inf A. For
each pair (x, y) € X x X, the supremum and infimum of the set {x, y} (when-
ever they exist) are denoted by sup(x, y) and inf(x, y) respectively. (X, <) is
called a lattice if for each pair (x, y), sup(x, y) and inf(x, y) exist, and (X, <)is
called a complete lattice if sup 4 and inf A4 exist for every non-empty subset
A < X. (In general we avoid this latter terminology because of the possible
confusion with uniform completeness.) (X, <) is totally ordered if for each
pair (x, y), at least one of the relations x < y and y < x is true. An element
x € X is maximal if x < y implies x = y.

Let (X, <) be a non-empty ordered set. X is called directed under <
(briefly, directed (<)) if every subset {x, y} (hence each finite subset) possesses
an upper bound. If x, € X, the subset {x € X : x; < x} is called a section of X
(more precisely, the section of X generated by x,). A family {y,:xe€ A} is
directed if A is a directed set; the sections of a directed family are the sub-
families {y,: oy < a}, for any o, € A.

Finally, an ordered set X is inductively ordered if eath totally ordered
subset possesses an upper bound. In each inductively ordered set, there exist
maximal elements (Zorn’s lemma). In most applications of Zorn's lemma,
the set in question is a family of subsets of a set S, ordered by set theoretical
inclusion <.

6. Filters. Let X be a set. A set §§ of subsets of X is called a filter on X if
it satisfies the following axioms:

() F#Jand T ¢ §.
(2) Fe§and F < G < X implies G € §.
(3) Fe §and G e & implies Fn G € §.

A set B of subsets of X is a filter base if (1') B # ¢ and ¥ ¢ B, and (2 if
B, B and B, e VB there exists By € B such that By « B, n B,. Every filter
base B generates a unique filter § on X such that Fe F if and only if
B < F for at least one Be B; B is called a base of the filter §§. The =2t of all
filters on a non-empty set X is inductively ordered by the relation %, < &,
(set theoretic inclusion of V(X )): §F, < &, is expressed by saying that i, i~
coarser than &,, or that ¥, is finer than §,. Every filter on X which is maximal
with respect to this ordering, is called an ultrafilter on X: by Zorn’s lemma,
for each filter & on X there exists an ultrafilter finer than . If {x x€ A]
is a directed family in X, the ranges of the sections of this family form z filter
base on X; the corresponding filter is called the section filter of the family.



4 PREREQUISITES

An elementary filter is the section filter of a sequence {x,:ne N} in X (N
being endowed with its usual order).

Literature. Sets: Bourbaki [1], Halmos [3]. Filters: Bourbaki [4], Bushaw
[1]. Order: Birkhoff [1], Bourbaki [1].

B. GENERAL TOPOLOGY

1. Topologies. Let X be a set, ® a set of subsets of X invariant under finite
intersections and arbitrary unions; it follows that X € ®, since X is the inter-
section of the empty subset of ®, and that &f € ®, since @ is the union of
the empty subset of ®. We say that ® defines a topology T on X; structurized
in this way, X is called a topological space and denoted by (X, ) if reference
to T is desirable. The sets G € ® are called open, their complements F = X ~ G
are called closed (with respect to T). Given 4 < X, the open set /J (or int A)
which is the union of all open subsets of A4, is called the interior of A; the
closed set A, intersection of all closed sets containing A, is called the closure
of A. An element x € 4 is called an interior point of A4 (or interior to A), an
element x € A is called a contact point (adherent point) of 4. If 4, B are subsets
of X, B is dense relative to 4 if A = B (dense in A if B< A and 4 < R). A
topological space X is separable if X contains a countable dense subset; X is
connected if X is not the union of two disjoint non-empty open subsets
(otherwise, X is disconnected).

I.=t X be a topological space. A subset I/ = X is a neighborhood of x if
x e U, and a neighborhood of A4 if x € 4 implies x € U. The set of.all neigh-
borhoods of x (respectively, of A) is a filter on X called the neighborhood
filter of x (respectively, of A); each base of this filter is a neighborhood base
of x (respectively, of 4). A bijection /' of X onto another topological space Y
such that f(A4) is open in Y if and only if 4 is open in X, is called a homeo-
morphism: X and Y are homeomorphic if there exists a homeomorphism of
X onto Y. The discrete topology on X is the topology for which every subset
of X' is open; the trivial topology on X is the topology whose only open sets
are ¢ and X.

2. Continuity and Convergence. Let X,Y be topological spaces and let
f: X — Y. fis continuous at x € X if for each neighborhood V of y = f(x),
f~'(V) is a neighborhood of x (equivalently, if the filter on Y generated by
the base f(U) is finer than B, where 1l is the neighborhood filter of x, B the
neighborhood filter of y). fis continuous on X into Y (briefly, continuous) if
fis continuous at each x € X (equivalently, if /~'(G) is open in X for each
open G < Y). If Z is also a topological space and /: X — Y and g: Y — Z are
continuous, then g o f: X — Z is continuous.

A filter & on a topological space X is said to converge to x € X if § is finer
than the neighborhood filter of x. A sequence (more generally, a directed
family) in X converges to x € X if its section filter converges to x. If also Y
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is a topological space and  is a filter (or merely a filter base) on X, and if
f:X— Y is a map, then f is said to converge to y € Y along § if the filter
generated by f(§) converges to y. For example, f is continuous at x € X if
and only if f converges to y = f{x) along the neighborhood filter of x. Given a
filter § on X and x € X, x is a cluster point (contact point, adherent point) of
& if x e F for each Fe §. A cluster point of a sequence (more generally, of a
directed family) is a cluster point of the section filter of this family.

3. Comparison of Topologies. If X is a set and I, X, are topologies on X,
we say that T, is finer than T, (or I, coarser than I,) if every T,-open set
is T,-open (equivalently, if every T,-closed set is T,-closed). (If &, and G,
are the respective families of open sets in X, this amounts to the relation
G, = G, in P(P(X)).) Let {T,: 2 € A} be a family of topologies on X. There
exists a finest topology ¥ on X which is coarser than each T (x € A); a set G
is T-open if and only if G is T,-open for each a. Dually, there exists a coarsest
topology ¥, which is finer than each T (o € A). If we denote by G, the set
of all finite intersections of sets open for some I, the set &, of all unions of
sets in &, constitutes the T,-open sets in X. Hence with respect to the relation
“T, is finer than T, ™, the set of all topologies on X is a complete lattice;
the coarsest topology on X is the trivial topology, the finest topology is the
discrete topology. The topology T is the greatest lower bound (briefly, the
lower bound) of the family {T,: x € A}; sxmllarly, T, is the upper bound of the
family {T,: x € A}.

One derives from this two general methods of defining a topology (Bourbaki
[4]). Let X be a set, {X,: « € A} a family of topological spaces. If {f,: x € A}
is a family of mappings, respectively of X into X,, the projective topology
(kernel topology) on X with respect to the family {(X,, f,): « € A} is the coarsest
topology for which each f is continuous. Dually, if {g,: € A} is a family of
mappings, respectively of X, into X, the inductive topology (hull topology)
with respect to the family {(X,, g,): « € A} is the finest topology on X for
which each g, is continuous. (Note that each f, is continuous for the discrete
topology on X, and that each g, is continuous for the trivial topology on X.)
If A = {1} and I, is the topology of X, the projective topology on X with
respect to (X, f;) is called the inverse image of T, under f, and the inductive
topology with respect to (X, g,) is called the direct image of T, under g,.

4. Subspaces, Products, Quotients. 1f (X, T) is a topological space, 4 a
subset of X, fthe canonical imbedding A4 — X, then the induced topology on
A is the inverse image of T under /. (The open subsets of this topology are
the intersections with A4 of the open subsets of X.) Under the induced
topology, A4 is called a topological subspace of X (in general, we shall avoid
this terminology because of possible confusion with vcctor subspaces). If
(X, T) is a topological space, R an equivalence relation on X, g the canonical
map X — X/R, then the direct image of T under g is called the quotient
(topology) of X; under this topology, X/R is the topological quotient of
X by R.
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Let { X,: « € A} be a family of topological spaces, X their Cartesian product,
Ja the projection of X onto X,. The projective topology on X with respect to
the family {(X,,f,): « € A} is called the product topology on X. Under this
topology, X is called the topological product (briefly, product) of the family
{X;ae Al

Let X,Y be topological spaces, /a mapping of X into Y. We say that fis
open (or an open map) if for each open set G = X, f(G) is open in the topo-
logical subspace f(X) of Y. fis called closed (a closed map) if -the graph of
f'is a closed subset of the topological product X x Y.

5. Separation Axioms. Let X be a topological space. X is a Hausdorff (or
separated) space if for each pair of distinct points x,y there are respective
neighborhoods U,, U, such that U, n U, = . If (and only if) X is separated,
each filter § that converges in X, converges to exactly one x € X; x is calied
the limit of §. X is called regular if it is separated and each point possesses a
base of closed neighborhoods; X is called normal if it is separated and for
each pair A, B of disjoint closed subsets of X, there exists a neighborhood U
of 4 and a neighborhood V of B such that U n V = .

A Hausdorff topological space X is normal if and only if for each pair
A, B of disjoint closed subscts of X, there exists a continuous function f on
X into the real interval [0,1] (under its usual topology) such that f{x) =0
whenever x € A4, f(x) = | whenever x € B (Urysohn’s theorem).

A separated space X such that for each closed subset 4 and each b ¢ A,
there exists a continuous function f: X — [0,1] for which f(b) = 1 and f(x) = 0
whenever x € A4, is called completely regular; clearly, every normal space is
completely regular, and every complctely regular space is regular,

6. Uniform Spaces. Let X be a set. For arbitrary subsets W, V of X x X,
we write W™ = {(y, x): (x,y)e W},and Ve W = {(x,z): there exists ye X
such that (x,y)e W, (y,z)e V}. The set A = {(x, x): xe X} is called the
diagonal of X x X. Let IB be a filter on X x X satisfying these axioms:

(1) Each W e M contains the diagonal A.
(2) We W implies W' € .
(3) For each W e s, there exists V € W such that Vo V < W,

We say that the filter 2B (or any one of its bases) defines a uniformity (or
uniform structure) on X, each W e R being called a vicinity (entourage) of
the uniformity. Let & be the family of all subsets G of X such that xe G
implies ‘the existence of W e M satisfying {v: (x,y)e W} < G. Then ® is
invariant under finite intersections and arbitrary unions, and hence defines
a topology T on Xsuch that foreach x € X, the family W(x) = {):(x, y) e W},
where W runs through B, is a neighborhood base of x. The space (X, 1),
endowed with the topology T derived from the uniformity 28, is called a
uniform space. A topological space X is uniformisable if its topology can be
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derived from a uniformity on X; the reader should be cautioned that, in
general, such a uniformity is not unique.

A uniformity is separated if its vicinity filter satisfies the additional axiom

4) N{W: Wel} =A. :

* (4) is a necessary and sufficient condition for the topology derived from the
uniformity to be a Hausdorff topology. A Hausdorff topological space is
uniformisable if and only if it is completely regular.

Let X, Y be uniform spaces. A mapping f: X — Y is uniformly continuous
if for each vicinity V of Y, there exists a vicinity U of X such that (x,y) e U
implies (f(x), f(»)) € V. Each uniformly continuous map is continuous. The
uniform spaces X, Y are isomorphic if there exists a bijection f of X onto Y
such that both fand f ~! are uniformly continuous; fitself is called a uniform
isomorphism.

If I, and 2B, are two filters on X x X, each defining a uniformity on the.
set X, and if W, = MW,, we say that the uniformity defined by I, is coarser
than that defined by 9,. If X is a set, {X,: 2 € A} a family of uniform spaces
and f,(« € A) are mappings of X into X, then there exists a coarsest uniformity
on X for which each f(x € A) is uniformly continuous. In this way, one
defines the product uniformity on X = H,X, to be the coarsest uniformity for
which each of the projections X — X, is uniformly continuous; similarly,
if X is a uniform space and 4 < X, the induced uniformity is the coarsest
uniformity on A4 for which the canonical imbedding 4 — X is uniformly
continuous.

Let X be a uniform space. A filter § on X is a Cauchy filter if, for each
vicinity ¥, there exists Fe & such that F x F< V. If each Cauchy filter
converges (to an element of X) then X is called complete. To each uniform
space X one can construct a complete uniform space X such that X is
(uniformly) isomorphic with a dense subspace of X, and such that X is
separated if X is. If X is separated, then X is determined by these properties
to within isomorphism, and is called the completion of X. A base of the
vicinity filter of X can be obtained by taking the closures (in the topolog-
ical product X x X) of a base of vicinities of X. A Cauchy sequence in
X is a sequence whose section filter is a Cauchy filter; if every Cauchy
sequence in X converges, then X is said to be semi-complete (sequentially
complete).

If X is a complete uniform space and A a closed subspace, then the uniform
space A is complete; if X is a separated uniform space and 4 a complete
subspace, then A4 is closed in X. A product of uniform spaces is complete if
and only if each factor space is complete.

If X'is a uniform space, Y a complete separated space, X,  Xandf: X, — Y
uniformly continuous; then f has a unique uniformly continuous extension
[ Xy Y.

7. Moetric and Metrizable Spaces. 1f X is a set, a non-negative real function
don X x X is called a metric if the following axioms are satisfied:
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(1) d(x, y) = 0 is equivalent with x = y.
(2) d(x, y) = d(y, x).
() dix,z) <d(x,y) + d(y,2) (triangle inequality).

Clearly, the sets W, = {(x, y):d(x, y) < n~'}, where n € N, form a filter base
on X x X defining a separated uniformity on X; by the metric space (X, d) we
understand the uniform space X endowed with the metric d. Thus all uniform
concepts apply to metric spaces. (It should be understood that, historically,
uniform spaces are the upshot of metric spaces.) A topological space is
metrizable if its topology can be derived from a metric in the manner indicated;
a uniform space is metrizable (i.e., its uniformity can be generated by a
metric) if and only if it is separated and its vicinity filter has a countable base.
Clearly, a metrizable uniform space is complete if it is semi-complete.

8. Compact and Precompact Spaces. Let X be a Hausdorff topological
space. X is called compact if every open cover of X has a finite subcover.
For X to be compact, each of the following conditions is necessary and
sufficient: (a) A family of closed subsets of X has non-empty intersection
whenever each finite subfamily has non-empty intersection. (b) Each filter
on X has a cluster point. (c) Each ultrafilter on X converges.

Every closed subspace of a compact space is compact. The topological pro-
duct of any family of compact spaces is compact (Tychonov’s theorem). If X
iscompact, Y'a Hausdorff space,and /: X — Y continuous, then f{ X) is a com-
pact subspace of Y. If fis a continuous bijection of a compact space X onto a
Hausdorffspace Y, then f isa homeomorphism (equivalently : If (X, T, ) is com-
pact and T, is a Hausdorff topology on X coarser than I, then T, = T,).

There is the following important relationship between compactness and
uniformities: On every compact space X, there exists a unique uniformity
generating the topology of X; the vicinity filter of this uniformity is the
neighborhood filter of the diagonal A in the topological product X x X. In
particular, every compact space is a complete uniform space. A separated
uniform space is called precompact if its completion is compact. (However,
note that a topological space can be precompact for several distinct uni-
formities yielding its topology.) X is precompact if and only if for each
vicinity W, there exists a finite subset X, © X such that X < {J {W(x): x € X,}.
A subspace of a precompact space is precompact, and the product of any
family of precompact spaces is precompact.

A Hausdorff topological space is called locally compact if each of its points
possesses a compact neighborhood.

9. Category and Baire Spaces. Let X be a topological space, 4 a subset of
X. A is called nowhere dense (rare) in X if its closure 4 has empty interior;
A is called meager (of first category) in X if A is the union of a countable set
of rare subsets of X. A subset 4 which is not meager is called non-meager (of
second category) in X if every non-empty open subset is nonmeager in X,
then X is called a Baire space. Every locally compact space and every complete
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metrizable space is a Baire space (Baire’s theorem). Each non-meager subset
of a topological space X is non-meager in itself, but a topological subspace
of X can be a Baire space while being a rare subset of X.

Literature: Berge [1]; Bourbaki [4], [5], [6]; Kelley [1]. A highly recom-
mendable introduction to topological and uniform spaces can be found in
Bushaw [l]. -

C. LINEAR ALGEBRA

1. Vector Spaces. Let L be a set, K a (not necessarily commutative) field.
Suppose there are defined a mapping (x, y) » x + y of L x L into L, called
addition, and a mapping (4, x) = Ax of K x L into L, called scalar multiplica-
tion, such that the following axioms are satisfied (x, y, z denoting arbitrary
elements of L, and A, p arbitrary elements of K):

MDD Ex+p)+z=x+Q+2).

@ x+y=y+x

(3) There exists an element,0 € L such that x + 0 = x for all x € L.
(4) For each x € L, there exists z € L such that x + z = 0.

(5) Mx + y) = Ax +-4y.

(6) (A + pw)x = Ax + px.

(7) Mpux) =(Au)x.

@) Ix=ux.

Endowed’ thh the structure so defined, L is called a left vector space over
K. The element 0 postulated by (3) is unique and called the zero element of L.
(We shall not distinguish notationally between the zero elements of L and
K.) Also, for any x € L the element z postulated by (4) is unique and denoted
by —x; thoreover, one has —x = (-— 1)x, and it ¥ customary to write x — y
for x + (—y).

If (l)—(4) hold as before but scalar multiplication is written (4, x) - x4 and
(5)—(8) are changed accordingly, L is called a right vector space over K. By
a, vector space over K, we shall always understand a left vector space over K.
Since there is no yomt in distinguishing between left and right vector spaces
over K when K is ¢ommutative, there will be no need to consider right vector
spaces except in-C.4 below, and Chapter I, Section 4. (From Chapter II on,
K is always supposed to be the real field R or the complex field C.)

2, Linear Independence. Let L be a vector space over K. An element
Ayxy + - + A,,x,,, where n € N, is called a lfhear combination of the elements

x,eL(I ..., n);as usual, this is written Z Axyor Y Ax. If {x; a e H}

is a finite famxly, the sum of the elements X, is denoted by ¥ x,; for reasons
aeH
“of convemence, this is extended to the empty set by defining Y x=0.(This
xeQd



