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Preface

This is a graduate-level textbook about algorithms for computing with mod-
ular forms. It is nontraditional in that the primary focus is not on underly-
ing theory; instead, it answers the question “how do you use a computer to
explicitly compute spaces of modular forms?”

This book emerged from notes for a course the author taught at Harvard
University in 2004, a course at UC San Diego in 2005, and a course at the
University of Washington in 2006.

The author has spent years trying to find good practical ways to compute
with classical modular forms for congruence subgroups of SLy(Z) and has
implemented most of these algorithms several times, first in C++ [Ste99b],
then in MAGMA [BCP97], and as part of the free open source computer
algebra system SAGE (see [Ste06]). Much of this work has involved turning
formulas and constructions buried in obscure research papers into precise
computational recipes then testing these and eliminating inaccuracies.

The author is aware of no other textbooks on computing with modular
forms, the closest work being Cremona’s book [Cre97a], which is about
computing with elliptic curves, and Cohen’s book [Coh93] about algebraic
number theory.

In this book we focus on how to compute in practice the spaces M (N,e)
of modular forms, where k£ > 2 is an integer and ¢ is a Dirichlet character
of modulus N (the appendix treats modular forms for higher rank groups).
We spend the most effort explaining the general algorithms that appear so
far to be the best (in practice!) for such computations. We will not dis-
cuss in any detail computing with quaternion algebras, half-integral weight
forms, weight 1 forms, forms for noncongruence subgroups or groups other
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xii Preface

than GLg, Hilbert and Siegel modular forms, trace formulas, p-adic modular
forms, and modular abelian varieties, all of which are topics for additional
books. We also rarely analyze the complexity of the algorithms, but instead
settle for occasional remarks about their practical efficiency.

For most of this book we assume the reader has some prior exposure to
modular forms (e.g., [DS05]), though we recall many of the basic defini-
tions. We cite standard books for proofs of the fundamental results about
modular forms that we will use. The reader should also be familiar with
basic algebraic number theory, linear algebra, complex analysis (at the level
of [Ah178]), and algorithms (e.g., know what an algorithm is and what big
oh notation means). In some of the examples and applications we assume
that the reader knows about elliptic curves at the level of [Sil92].

Chapter 1 is foundational for the rest of this book. It introduces congru-
ence subgroups of SL2(Z) and modular forms as functions on the complex
upper half plane. We discuss g-expansions, which provide an important
computational handle on modular forms. We also study an algorithm for
computing with congruence subgroups. The chapter ends with a list of ap-
plications of modular forms throughout mathematics.

In Chapter 2 we discuss level 1 modular forms in much more detail. In
particular, we introduce Eisenstein series and the cusp form A and describe
their g-expansions and basic properties. Then we prove a structure theorem
for level 1 modular forms and use it to deduce dimension formulas and give
an algorithm for explicitly computing a basis. We next introduce Hecke
operators on level 1 modular forms, prove several results about them, and
deduce multiplicativity of the Ramanujan 7 function as an application. We
also discuss explicit computation of Hecke operators. In Section 2.6 we make
some brief remarks on recent work on asymptotically fast computation of
values of 7. Finally, we describe computation of constant terms of Eisenstein
series using an analytic algorithm. We generalize many of the constructions
in this chapter to higher level in subsequent chapters.

In Chapter 3 we turn to modular forms of higher level but restrict for
simplicity to weight 2 since much is clearer in this case. (We remove the
weight restriction later in Chapter 8.) We describe a geometric way of view-
ing cuspidal modular forms as differentials on modular curves, which leads
to modular symbols, which are an explicit way to present a certain homol-
ogy group. This chapter closes with methods for explicitly computing cusp
forms of weight 2 using modular symbols, which we generalize in Chapter 9.

In Chapter 4 we introduce Dirichlet characters, which are important
both in explicit construction of Eisenstein series (in Chapter 5) and in de-
composing spaces of modular forms as direct sums of simpler spaces. The
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main focus of this chapter is a detailed study of how to explicitly represent
and compute with Dirichlet characters.

Chapter 5 is about how to explicitly construct the Eisenstein subspace
of modular forms. First we define generalized Bernoulli numbers attached to
a Dirichlet character and an integer then explain a new analytic algorithm
for computing them (which generalizes the algorithm in Chapter 2). Finally
we give without proof an explicit description of a basis of Eisenstein series,
explain how to compute it, and give some examples.

Chapter 6 records a wide range of dimension formulas for spaces of
modular forms, along with a few remarks about where they come from and
how to compute them.

Chapter 7 is about linear algebra over exact fields, mainly the rational
numbers. This chapter can be read independently of the others and does not
require any background in modular forms. Nonetheless, this chapter occu-
pies a central position in this book, because the algorithms in this chapter
are of crucial importance to any actual implementation of algorithms for
computing with modular forms.

Chapter 8 is the most important chapter in this book; it generalizes
Chapter 3 to higher weight and general level. The modular symbols for-
mulation described here is central to general algorithms for computing with
modular forms.

Chapter 9 applies the algorithms from Chapter 8 to the problem of
computing with modular forms. First we discuss decomposing spaces of
modular forms using Dirichlet characters, and then explain how to compute
a basis of Hecke eigenforms for each subspace using several approaches.
We also discuss congruences between modular forms and bounds needed to
provably generate the Hecke algebra.

Chapter 10 is about computing analytic invariants of modular forms.
It discusses tricks for speeding convergence of certain infinite series and
sketches how to compute every elliptic curve over Q with given conductor.

Chapter 11 contains detailed solutions to most of the exercises in this
book. (Many of these were written by students in a course taught at the
University of Washington.)

Appendix A deals with computational techniques for working with gen-
eralizations of modular forms to more general groups than SLy(Z), such as
SLn(Z) for n > 3. Some of this material requires more prerequisites than
the rest of the book. Nonetheless, seeing a natural generalization of the
material in the rest of this book helps to clarify the key ideas. The topics in
the appendix are directly related to the main themes of this book: modular



xiv Preface

symbols, Manin symbols, cohomology of subgroups of SLg(Z) with various
coeflicients, explicit computation of modular forms, etc.

Software. We use SAGE, Software for Algebra and Geometry Experimen-
tation (see [Ste06]), to illustrate how to do many of the examples. SAGE
is completely free and packages together a wide range of open source math-
ematics software for doing much more than just computing with modular
forms. SAGE can be downloaded and run on your computer or can be used
via a web browser over the Internet. The reader is encouraged to experi-
ment with many of the objects in this book using SAGE. We do not describe
the basics of using SAGE in this book; the reader should read the SAGE
tutorial (and other documentation) available at the SAGE website [Ste06].
All examples in this book have been automatically tested and should work
exactly as indicated in SAGE version at least 1.5.

Acknowledgements. David Joyner and Gabor Wiese carefully read the
book and provided a huge number of helpful comments.

John Cremona and Kevin Buzzard both made many helpful remarks that
were important in the development of the algorithms in this book. Much of
the mathematics (and some of the writing) in Chapter 10 is joint work with
Helena Verrill.

Noam Elkies made remarks about Chapters 1 and 2. Sandor Kovécs
provided interesting comments on Chapter 1. Allan Steel provided helpful
feedback on Chapter 7. Jordi Quer made useful remarks about Chapter 4
and Chapter 6.

The students in the courses that I taught on this material at Harvard,
San Diego, and Washington provided substantial feedback: in particular,
Abhinav Kumar made numerous observations about computing widths of
cusps (see Section 1.4.1) and Thomas James Barnet-Lamb made helpful re-
marks about how to represent Dirichlet characters. James Merryfield made
helpful remarks about complex analytic issues and about convergence in Stir-
ling’s formula. Robert Bradshaw, Andrew Crites (who wrote Exercise 7.5),
Michael Goff, Dustin Moody, and Koopa Koo wrote most of the solutions
included in Chapter 11 and found numerous typos throughout the book.
Dustin Moody also carefully read through the book and provided feedback.

H. Stark suggested using Stirling’s formula in Section 2.7.1, and Mark
Watkins and Lynn Walling made comments on Chapter 3.

Parts of Chapter 1 follow Serre’s beautiful introduction to modular forms
[Ser73, Ch. VII] closely, though we adjust the notation, definitions, and
order of presentation to be consistent with the rest of this book.
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Notation and Conventions. We denote canonical isomorphisms by 2
and noncanonical isomorphisms by =. If V is a vector space and s denotes
some sort of construction involving V, we let V; denote the corresponding
subspace and V' the quotient space. E.g., if + is an involution of V, then
Vi is Ker(t —1) and V* = V/Im(. — 1). If A is a finite abelian group, then
Ator denotes the torsion subgroup and A/tor denotes the quotient A/A¢or.
We denote right group actions using exponential notation. Everywhere in
this book, N is a positive integer and k is an integer.

If N is an integer, a divisor t of N is a positive integer such that N /t is
an integer.
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Chapter 1

Modular Forms

This chapter introduces modular forms and congruence subgroups, which
are central objects in this book. We first introduce the upper half plane and
the group SLy(Z) then recall some definitions from complex analysis. Next
we define modular forms of level 1 followed by modular forms of general
level. In Section 1.4 we discuss congruence subgroups and explain a simple
way to compute generators for them and determine element membership.
Section 1.5 lists applications of modular forms.

We assume familiarity with basic number theory, group theory, and com-
plex analysis. For a deeper understanding of modular forms, the reader is
urged to consult the standard books in the field, e.g., [Lan95, Ser73, DI95,
Miy89, Shi94, Kob84|. See also [DS05], which is an excellent first intro-
duction to the theoretical foundations of modular forms.

1.1. Basic Definitions

The group

SLy(R) = {(‘CL 2) cad —be =1 and a,b,c,deR}

acts on the complex upper half plane

h={z€C:Im(z) >0}
by linear fractional transformations, as follows. If v = (i 3) € SLy(R), then
for any z € h we let

az+b

(1.1.1) 1z)=—— €.

1



2 1. Modular Forms

Since the determinant of « is 1, we have

d t) 1

— z) = ———.

dz ! (cz+d)?
Definition 1.1 (Modular Group). The modular group is the group of all
matrices (‘Cl g) with a,b,¢,d € Z and ad — bc = 1.

For example, the matrices

(1.1.2) S:G ‘é) and T:((l) i)

are both elements of SLy(Z); the matrix S induces the function z — —1/2
on b, and 7T induces the function z — z + 1.

Theorem 1.2. The group SLo(Z) is generated by S and T'.
Proof. See e.g. [Ser73, §VIIL1]. O

In SAGE we compute the group SLs(Z) and its generators as follows:

sage: G = SL(2,ZZ); G
Modular Group SL(2,Z)
sage: S, T = G.gens()

sage: S
[ 0 -1]
[1 o]
sage: T
[1 1]
[0 1]

Definition 1.3 (Holomorphic and Meromorphic). Let R be an open subset
of C. A function f: R — C is holomorphic if f is complex differentiable at
every point z € R, i.e., for each z € R the limit
: +h) — f(2)
/ = 1 f(Z
fiz) = lim A

exists, where h may approach 0 along any path. A function f : R — CU{oco}
is meromorphic if it is holomorphic except (possibly) at a discrete set S of
points in R, and at each a@ € S there is a positive integer n such that
(z — @)™ f(z) is holomorphic at a.

The function f(z) = e® is a holomorphic function on C; in contrast,
1/(z — 1) is meromorphic on C but not holomorphic since it has a pole at i.
The function e~'/# is not even meromorphic on C.



1.2. Modular Forms of Level 1 3

Modular forms are holomorphic functions on § that transform in a par-
ticular way under a certain subgroup of SLy(Z). Before defining general
modular forms, we define modular forms of level 1.

1.2. Modular Forms of Level 1

Definition 1.4 (Weakly Modular Function). A weakly modular function of
weight k € Z is a meromorphic function f on h such that for all v = (‘; g) €
SLy(Z) and all z € h we have

(1.2.1) f(2) = (cz + d) 7 f(1(2)).

The constant functions are weakly modular of weight 0. There are no
nonzero weakly modular functions of odd weight (see Exercise 1.4), and it
is not obvious that there are any weakly modular functions of even weight
k > 2 (but there are, as we will see!). The product of two weakly modular
functions of weights k; and ks is a weakly modular function of weight ki + ko
(see Exercise 1.3).

When £ is even, (1.2.1) has a possibly more conceptual interpretation;
namely (1.2.1) is the same as

FO(@))(d(v()))*? = f(2)(d2)*/2.

Thus (1.2.1) simply says that the weight k “differential form” f(z)(dz)*/2 is
fixed under the action of every element of SLy(Z).

By Theorem 1.2, the group SL3(Z) is generated by the matrices S and
T of (1.1.2), so to show that a meromorphic function f on b is a weakly
modular function, all we have to do is show that for all z € h we have

(1.2.2) flz+1) = f(2) and f(=1/2) = 2% f(2).

Suppose f is a weakly modular function of weight k. A Fourier expansion
of f, if it exists, is a representation of f as f(z) = Soo L ane?™nZ for all
z € h. Let ¢ = q(2) = ¥, which we view as a holomorphic function on
C. Let D' be the open unit disk with the origin removed, and note that
q defines a map h — D’. By (1.2.2) we have f(z + 1) = f(z), so there is
a function F' : D' — C such that F(q(z)) = f(z). This function F is a

complex-valued function on D', but it may or may not be well behaved at 0.

Suppose that F' is well behaved at 0, in the sense that for some m € Z
and all g in a neighborhood of 0 we have the equality

(1.2.3) F(q) = Z anq".



