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Preface

Circular dichroism (CD) and magnetic circular dichroism (MCD) spectro-
scopy can often provide key information about the conformations and elec-
tronic states of chromophore-containing molecules, which is required for a
full understanding of the electronic structures and optical spectroscopy.
Unfortunately, the theory that underpins these techniques has been largely
inaccessible to many organic chemists and biochemists and only a few
researchers have carried out detailed quantitative analyses of their spectral
data. Until recently, a key problem that has been encountered is that relatively
few molecules have been available that can be used to describe the various
methods for analysing the spectral data in a clear and concise manner. This is
not surprising because people who excel at spectroscopic theory usually lack
the skills required to design and synthesise the molecules that would be most
appropriate for describing the theory of CD and MCD spectroscopy. Most of
the books that have been written on this subject have, therefore, been based on
dense sets of mathematical equations and have been aimed primarily at physi-
cal chemists and physicists.

Our aim in writing this book is to try to rectify this situation by summarising
the different types of CD and MCD spectra and by describing in detail the
qualitative and quantitative methods that can be used to analyse the spectral
data. Over the last two decades we have successfully synthesised a series of
molecules which are ideal for illustrating key points related to the theory of CD
and MCD spectroscopy, and we are confident that the time is finally ripe to
write a book which will provide the key practical knowledge required to use the
CD and MCD techniques to their full potential. In the first chapter, we will
provide an introduction to the most important aspects of the theory of elec-
tronic absorption, CD and MCD spectroscopy. The important aspects of
electronic absorption spectroscopy are described first, since absorption spectra
are usually recorded and analysed during any study of the CD and MCD
spectra because the spectral bands in each case arise from the same set of
transitions. The content is aimed primarily at a reader who already possesses a
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Vi Preface

first year undergraduate level of understanding of physical chemistry.
In the case of small chromophores, the lowest energy electric dipole allowed
transitions are often aligned along the direction of the permament dipole
moment of the molecule. Transitions of this type are often ideally suited for
analysis by CD spectroscopy, since both the electric and magnetic dipole
transition moments are well defined in terms of their alignment and can play a
key role in generating CD intensity based on several different intensity
mechanisms, which will be described in detail. MCD spectra are obtained by
placing a magnet in the sample compartment of a CD spectrometer. MCD
spectroscopy provides key information about the degeneracy of ground and
excited states which cannot easily be derived from the electronic absorption
spectrum alone.

In Chapters 2 and 3, we present key information about two of the most
widely used analytical approaches that have been reported to date, which could
probably be viewed as core knowledge for organic chemists and biochemists
who want to become active in this field. Our hope is that in many instances
researchers who are new to the field will find that the examples provided can
serve as a useful template for analysing their own data. In Chapter 2, the most
well known empirical rules for analysing CD spectra, which have been devel-
oped over the past 50 years, are described. Although theoreticians have
described detailed mathematical rationales for these, there is usually no need to
study their research in detail to be able to derive key information about the
conformation or configuration of certain specific types of chiral system, such as
ketones and substituted benzene rings. The key is to learn how the empirical
rules have been applied successfully by earlier researchers and to be fully aware
of any exceptions to the rules which have been reported. In Chapter 3, we
describe a wide range of examples of the use of exciton coupling theory in the
conformational analysis of natural and synthetic dimers, oligomers and poly-
mers. The sign sequence observed in the CD spectra of excition couplets
has been found to be related to the relative alignments of the interacting
chromophores in space.

In Chapters 4 to 8 more specialised types of analysis are examined.
In chapter 4, the use of cyclodextrin inclusion compounds to study the CD
spectra of guest molecules trapped in the central cavity is described in detail.
Host-guest complexes with clearly defined geometries are readily formed in
solution, which enables the analysis of the alignment of band polarisations at
wavelengths as short as 200 nm even in the absence of single crystals. The focus
in Chapter 5 shifts over to the CD spectroscopy of inorganic complexes based
either on the m-system transitions of the ligand or on the d — d transitions of
the central metal. In recent years the incorporation of 1,1°-binaphthyl (BINAP)
moieties has been used to study the asymmetric synthesis of porphyrinoids,
since BINAP provides a well defined asymmetric field, which interacts with the
porphyrinoid m-system in a manner that can be readily predicted. This research
is described in detail in Chapter 6. Although CD spectra can often be readily
analysed in conceptual terms based on the theory which describes various
intensity mechanisms, in some cases this is not possible and the analysis of the
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system has to depend almost entirely on theoretical calculations. Molecules
with intrinsic chirality are best suited to this approach. Several examples are
described in detail in Chapter 7. The results of these calculations have to be
treated with caution, however, for reasons that are described in detail. In
Chapter 8, the CD spectroscopy of biomolecules will be described. Since large
proteins contain many chromophores, which lie at various distances from each
other in a wide range of alignments, the quantitative analysis of these spectra is
usually not possible, but the CD technique can still be used to derive qualitative
information and has been widely applied on this basis.

In Chapter 9. representative examples of the use of MCD spectroscopy are
described. Many of the examples revolve around the study of porphyrin
complexes, since the technique has been particularly widely utilised in this
context. The theory of MCD spectroscopy can be challenging for many organic
chemists, because it revolves around the application of molecular orbital theory
to conceptualise the structure and bonding of chromophores, rather than the
valence bond theory approach that tends to be used in organic chemistry. In
Chapter 10, we describe how Michl’s perimeter model, a molecular bonding
theory approach, can be used a molecular bonding theory approach can be
used to analyse the MCD spectra of aromatic and antiaromatic n-systems.
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[3.3]PCP
acac

Ara
BINAP
bipy
B3LYP

CAM-B3LYP
CBD
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con.
Cp
CyD
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DFT
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en
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Gal
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lep
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[3.3]paracyclophane

acetylacetonate
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2.2-bipyridyl

Becke 3-parameter (exchange), Lee, Yang and Parr
(correlation)

Coulomb attenuated method B3LYP
cyclobutadiene

circular dichroism

configuration interaction

consignate

cyclopentadiene

cyclodextrin

dissignate

density functional theory
deoxyribonucleic acid

clectric dipole transition moment
cthylenediamine

clectron paramagnetic resonance
ferrocene

galactose

glucose

high-performance liquid chromatography
induced circular dichroism

linear combination of atomic orbitals
left circularly polarised

ligand to metal charge transfer

lysine
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Man mannose

MCD magnetic circular dichroism

mdtm magnetic dipole transition moment
MO molecular orbital

MORD magnetic optical rotatory dispersion
MLCT metal to ligand charge transfer
MW molecular weight

NMR nuclear magnetic resonance

OAM orbital angular momentum

OBz benzoate

ORD optical rotatory dispersion

Pc phthalocyanine

phen o-phenanthroline

rep right circularly polarised

RNA ribonucleic acid

SCF-CI-DV self consistent field—configuration interaction—dipole velocity
SCF-PPP-CI self-consistent field Pariser-Parr-Pople configuration

interaction
SM spectroscopic moment
TD-DFT time dependent—density functional theory
TFA trifluoroacetic acid
TZVP triple zeta valence plus polarisation
VTVF variable temperature variable field
X exchange—correlation
Xyl xylose

ZFS zero field splitting
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CHAPTER 1

Theory of Optical Spectroscopy

1.1 Electronic Absorption Spectroscopy

Optical spectroscopy is based ultimately on the interaction between atoms or
molecules and incident electromagnetic radiation. In the 1860s, a Scottish
physicist called James Clerk Maxwell first postulated that an oscillating electric
field generates an oscillating magnetic field and vice versa. A propagating
sinusoidal electromagnetic wave can be formed on this basis, with electric and
magnetic fields oscillating perpendicular to one another and to the direction of
propagation. Electromagnetic radiation exhibits both wave properties and
particle properties and was described successfully by Albert Einstein in quan-
tum mechanical terms as a particle, referred to as a photon (hv), which has no
mass or charge. At longer wavelengths in the IR region (>1000 nm) the
interaction between the atomic nuclei and the oscillating electric and magnetic
fields typically results in molecular vibrations, which can be studied by infrared
spectroscopy. At shorter wavelengths the heavier nuclei can no longer oscillate
significantly, but the surrounding cloud of electron density can still be polarised
in the direction of the oscillating electron field, resulting in an electronic
transition from a groundstate electron configuration to an excited state. UV-
visible absorption spectroscopy can be used to derive key information about
the electronic structures of molecules on this basis, while techniques such as
fluorescence spectroscopy can be used to derive information from the manner
in which the molecule returns to its groundstate configuration.

As shown in Figure 1.1, molecular orbital theory can be used to describe this
electronic excitation on the basis of the transfer of an electron from an occupied
molecular orbital to an unoccupied molecular orbital. The energy difference
between the ground and excited states (AE) is proportional to the frequency of
the absorbed electromagnetic radiation (v):

AE = hv = he/ (L.1)
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2 Chapter 1
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States

Figure 1.1 Energy diagram showing an electronic transition.

where h is the Planck constant (h=6.626 x 10** J s), and ¢ and  denote the
velocity of light (¢=2.998 x 10° m s ') and the wavelength, respectively.
Especially in the context of organic molecules, absorption in a particular region
of the spectrum is often characteristic of a transition that is associated primarily
with a particular type of bond or structural unit within a molecule. These
structural units are usually referred to as chromophores. In the context of
saturated organic molecules, wavelengths much shorter than 200 nm are
required to cause electronic transitions. Since the conventional use of UV-
visible absorption spectrometers under an air atmosphere tends to be limited to
200 nm, owing to strong absorption by oxygen and ozone formation at shorter
wavelengths, electronic absorption spectroscopy is applied primarily to the n-
systems of organic molecules and inorganic metal complexes, which absorb
strongly at wavelengths >200 nm, with a particularly strong focus on aromatic
and heteroaromatic cyclic compounds.

The interaction of UV or visible region light (typically 200-750 nm) with a
molecule or complex can result in an electronic excitation from one molecular
orbital to another, resulting in a transition from the groundstate electronic
configuration to an excited state, Figure 1.1. This inherently results in a rear-
rangement of the electron density of a molecule. Since the size of molecules and
complexes will typically be a few orders of magnitude smaller than the wave-
length of UV-visible light, the electric field induces an oscillating electric dipole
moment upon absorption of a photon. An electric dipole transition moment
(edtm). u, can be defined for each transition, which describes the net linear
displacement of charge during a transition. The initial point of this vector is
set to the centre of gravity of the molecule, and the square of the transition
dipole moment is proportional to the intensity of the electronic transition.
If a transition is dipole forbidden, g =0, while a transition is said to be allowed
if @ > 0. The direction in which g is aligned determines the polarisation of the
associated spectral band with respect to the x-, y- and z-axes. It should be noted
that edtms are different from static electric dipole moments (also known as
permanent dipole moments), which describe the polarisation of charge in a
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Figure 1.2  An illustration of a static dipole moment (left) and an electric transition
dipole moment (right). The grey and white circles indicate electron dis-
tributions of the groundstate and an excited state.

O =

m H pm
magnetic dipole electric dipole chiral
charge rotation charge translation centre

Figure 1.3 The origin of chirality, based on the combined effect of electronic and
magnetic transition moments.

molecule in the groundstate, Figure 1.2. The direction of a static dipole moment
can be determined definitively on the basis of the molecular structure. In con-
trast, since a transition dipole has an oscillating property, the choice of the sense
of a transition dipole moment is arbitrary and depends on the phase of the
wavefunctions. A magnetic dipole transition moment (mdtm), m, can also be
defined for each electronic transition, which describes the net circulation of
charge during a transition, Figure 1.3. The edtms are usually the dominant
factor in coupling the groundstate with excited states within UV-visible
absorption spectroscopy, since they tend to be ca. five orders of magnitude
stronger than magnetic dipole moments. It should be noted that this is not the
case during the quantitative analysis of CD spectral data, since the intensity
mechanism is based on an interaction between electric and magnetic dipole
transition moments. Sections 2.2 and 5.2 describe the analyses of carbonyl n —
7* transitions in organic molecules and the ¢ — d transitions of transition metal
complexes, which are magnetic dipole allowed but electric dipole forbidden.

Group theory can be used to determine whether transitions are electric
dipole and magnetic dipole allowed or forbidden and the polarisation of the
spectral bands, which arise in the UV-visible absorption spectrum based on the
value of the transition moment integral:

[ vings (1.2)



