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Preface

Nucleic acids and their components play an important role in a variety of fundamental biological
processes. The elucidation of the molecular structure of deoxyribonucleic acid (DNA) in 1953 by
Watson and Crick led to the so-called central dogma of molecular biology. This dogma proclaims
that DNA is transcribed to form messenger ribonucleic acid (mRNA) of a complementary sequence
that directs its own replication and the sequence of nucleobases in the RNA is then translated to the
corresponding sequence of amino acids to form a protein. In addition to mRNA, two other RNA spe-
cies, transfer RNA (tRNA) and ribosomal RNA (rRNA), are required for this translation process.

The field of genomics has evolved over the last few years, culminating in the sequencing and
characterization of the entire human genome. Furthermore, genetic theory contributed to the
concept of coding by genes. A gene is defined, biochemically, as a segment of DNA (or, in a few
cases, RNA) that encodes the information required to produce a functional biological product—a
protein. Current challenges include the unraveling of the relationship between the genome and the
proteome. The genome can be used to predict the total potential proteome, including all of the
modifications that can be carried out after the initial translation of mRNA to protein by tRNAs
and rRNAs.

Consequently, nucleic acid research has had a most profound impact on molecular biology. The
study of noncovalent interactions between nucleic acids and peptides or proteins is a highly active
research field. Such interactions are involved in many cellular processes, including replication,
regulation of gene expression, and DNA packaging. Nearly all the functions of nucleic acids are
accomplished by interacting with proteins. Recognition and selectivity are achieved through non-
covalent contacts between virtually all biopolymers (proteins, DNA, RNA, polysaccharides, and
membrane lipids) that are present in living organisms. The formation and dissociation of these weak
interactions are crucial in a vast number of biochemical events. In addition, weak interactions
between nucleases and DNA or RNA are central to the recombination, repair, and replication of
these molecules in cells.

It is not possible to overestimate the role of metal ions in determining the three-dimensional
architecture of nucleic acids, their helices, and higher-order molecular assemblies. Protein—protein,
protein—nucleic acid, protein—ligand, and antibody—antigen interactions are other examples that
involve noncovalent interactions, which are also of fundamental importance for the pharmaceutical
industry in the evaluation of potential drug candidates.

The ability of DNA adducts to induce mutagenesis and carcinogenesis is dependent on their
chemical structure, stability, and ability to be recognized by specialized DNA repair proteins. The
local DNA sequence context plays a major role in mediating the rate of nucleobase adducts repair
and their mispairing potency. Furthermore, the exact location of a DNA adduct within the gene
determines whether the resulting mutation affects the structure and function of the gene product.

Among the biophysical techniques employed to study the large biomolecular assemblies involved
in these tasks, mass spectrometry presents the greatest potential based on its intrinsic characteristics
and accessible information. Therefore, mass spectrometry has had a major role in elucidating the
regulatory components and mechanisms involved in the progression from gene to functional protein.
Furthermore, analyses of nucleic acids is required to establish their size, purity, and sequence as a
prerequisite to their use as molecular probes or therapeutics in biomedical science.

The development of soft-ionization techniques for mass spectrometry has, without question,
transformed the field of nucleic acid chemistry. Significant progress in the area of accurate mass
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determination, sequencing, and the study of noncovalent interactions has been made possible by the
use of ionization techniques such as matrix-assisted laser desorption ionization coupled to time-of-
flight (MALDI-TOF) mass analyzers and electrospray ionization (ESI) coupled to conventional
analyzers and to tandem mass spectrometric (MS/MS) instruments. Mass spectrometry is now one
of the definitive methods for the characterization of isolated and synthetic DNA, RNA, and related
products. In addition to accurately determining an intact mass, one can obtain information on the
molecular structure and biopolymer sequence using a number of different mass spectrometry
approaches. These approaches have provided valuable information on structurally specific bio-
molecular DNA and RNA interactions. They can also enable the direct determination of stoichio-
metry for post-translational modifications of specific DNA—drug, DNA—protein, RNA—protein, and
DNA-RNA noncovalent and covalent associations. Furthermore, these mass spectrometry
approaches can be applied to DNA and RNA sequencing analyses, single-nucleotide polymor-
phisms, genotyping, mutation detection, genetic diagnosis, and probing of viral structures.

The editors acknowledge the special efforts of the contributors to this CRC/Taylor & Francis
publication: Diethard K. Bohme (Canada), William Buchmann (France), Ed Dudley (UK), Daniele
Fabris (USA), Valérie Gabelica (Belgium), Kristina Hakansson (USA), Filip Lemicre (Belgium),
Russell P. Newton (UK), Natalia Y. Tretyakova (USA), Antonio Triolo (Italy), Jean-Jacques Vasseur
(France), and Yinsheng Wang (USA). Each contributor, an expert in their particular discipline, has
shared their knowledge and understanding of the field of nucleic acid mass spectrometry.

Our aim is to expose you, the reader, to the latest developments in the field of nucleic acid mass
spectrometry. The past 15 years have seen dramatic progress in this field. Thus, in addition to
contributions that review and summarize these developments and advances, this book also contains
chapters describing the next generation of mass spectrometry analyses of nucleic acids and their
complexes that have been enabled by such past accomplishments.

This book should be equally accessible to the nucleic acids expert who is a mass spectrometry
novice as well as to those with expertise in mass spectrometry but a minimal appreciation of nucleic
acids. The exciting developments in mass spectrometry technology have fueled incredible advances
in our understanding of nucleic acids and their complexes. We believe these contributions have
captured these advances in outstanding fashion, serving to inspire new findings and developments
of interest to all in this field.

Finally, no work of this scope is possible without the guidance and support of the publisher. The
editors wish to especially acknowledge Ms. Jill J. Jurgensen for her expert help in preparing and
producing this book.

Joseph H. Banoub (Canada)
Patrick A. Limbach (USA)
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1.1 INTRODUCTION

Nucleic acids and their components play an important role in a variety of fundamental biological
processes.! The elucidation of the molecular structure of DNA in 1953 by Watson and Crick led to
the so-called central dogma of molecular biology.> This dogma proclaims that DNA is transcribed
to form a messenger RNA (mRNA) of a complementary sequence that directs its own replication,
and the sequence of nucleobases in the RNA is then translated to the corresponding sequence of
amino acids to form a protein.? In addition to mRNA, two other RNA species, transfer RNA (tRNA)
and ribosomal RNA (rRNA), are required for this translation process. Nucleic acid research has
consequently had a most profound impact on molecular biology, initiating an avalanche of new
disciplines. The field of genomics has evolved over the last few years, culminating in the sequencing
and characterization of the entire human genome.? Current challenges include the unraveling of the
relationship between the genome and the proteome. The genome can be used to predict the total
potential proteome, including all of the modifications that can be carried out after the initial transla-
tion from mRNA to protein. Mass spectrometry (MS) has had a major role in elucidating the regula-
tory mechanism involved in the progression from gene to functional protein.*

Nucleotides represent the primary level for the storage and transmission of genetic information.
They are not only crucial to the organization and execution of protein synthesis but also function as
secondary messengers, metabolic regulators, and components of vitamins.> They also act as high-
energy intermediates driving thermodynamically unfavorable enzyme-catalyzed reactions. Two
classes of heterocyclic nitrogenous bases are found in nucleic acids; the two purine derivatives,
adenine (A) and guanine (G), and the three pyrimidine derivatives, uracil (U), thymine (T), and
cytosine (C). There have been many studies devoted to the separation, isolation, and purification of
nucleic acids from biological samples as well as the separation and identification of constituents of
hydrolyzed RNA and DNA at the nucleotide, nucleoside, and nucleobase levels.® Elucidation of the
MS fragmentation patterns for simple nucleosides and nucleotides is a key step in developing an
understanding of the MS fragmentation patterns of more complex oligonucleotides and nucleic
acids. Seminal reviews by McCloskey and collaborators have established the fundamental impor-
tance of MS techniques and applications to nucleic acid research and other related biotechnological
fields.”?

The MS analysis of oligonucleotides is of primary importance since establishing the size, purity,
and sequence of nucleic acids is a prerequisite to their use as molecular probes in biomedical sci-
ence. Significant progress in the area of accurate mass determination, sequencing, and study of
noncovalent interactions has been made possible by the use of MS ionization techniques such
as matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) and electro-
spray ionization (ESI) coupled to conventional analyzers and to tandem mass spectrometric
(MS/MYS) instruments.

Nucleic acids and their constituents, due to their polarity and thermal lability, have presented a
considerable challenge for analysis by MS. Mixtures of a variety of nucleobases and nucleosides can
be analyzed by combined gas chromatography-mass spectrometry (GC-MS), although it is usually
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necessary to convert them to more volatile derivatives. The GC-MS analysis of more complex
nucleosides, with polar modifications in either the glycone (glycosyl portion) or the nucleobase
(aglycone), had not been very successful.'” However, with the development of newer ionization
methods, it has become feasible to perform, without any derivatization, MS analysis on nucleosides,
nucleotides, and other large related oligonucleotides (DNA and RNA).

Since the 1960s, it has been known that the mutagenic activity of many substances is linked to
the degree with which they covalently bind to DNA. The analysis and measurement of these carcin-
ogen—DNA adducts have been proposed as a means of evaluating the extent of human exposure to
specific carcinogens and of monitoring the presence and effects of these specific carcinogens in the
environment.%'"*-¢12 Highly sensitive and structurally informative analytical techniques are thus
needed for the general characterization of DNA modifications. MS has the potential to provide
structural information and, as such, has played an important role in the structural elucidation of
covalently modified nucleic acids.

Many ionization modes, such as electron ionization (EI) and chemical ionization (CI), have been
reviewed and employed for the structural elucidation of nucleic acids, their constituents, and their
covalently modified nucleic acids.”'*-'> All of these techniques provide, when coupled with MS/MS,
structural information for either single nucleobase-adducts or derivatized single nucleobase adducts.
In general, these methods suffer from either a lack of sensitivity necessary for the analysis of trace
levels of components derived from small amounts of DNA, or the need to use chemical derivatiza-
tion techniques to increase volatility and decrease thermal lability. The new technologies developed
in the last century, such as fast atom bombardment-mass spectrometry (FAB-MS), MALDI-
TOF-MS, ESI-TQ-MS (triple quadrupole, TQ), quadrupole-ion-trap (QIT), and Fourier transform
ion cyclotron resonance (FT-ICR), hybrid instruments such as the quadrupole orthogonal time-of-
flight (Q-TOF), quadrupole-ion-trap-time-of-flight (QIT-TOF), and quadrupole-ion-trap-Fourier
transform-ion cyclotron resonance-tandem mass spectrometry (QIT-FT-ICR-MS/MS) instruments
have allowed the analysis of nonderivatized adducts of nucleosides and nucleotides. In addition,
capillary electrophoresis (CE) coupled to MS/MS has been used for adduct detection.®!1a-¢.12

Thus, the intense interest in the MS analysis of nucleic acids and their components has produced
a wealth of published work. The major objectives of this chapter are to put into perspective the
progress in current biotechnological research in this area, highlight the most popular ionization
methods, and illustrate the diversity of strategies employed in the characterization and sequencing
of DNA and RNA oligomers, nucleosides, nucleotides, and adducts of biomedical importance.

1.2 GAS-PHASE TECHNIQUES

The analysis of nucleic acids and derived products isolated from complex biological matrixes is
synonymous with analysis at very low concentrations. Thus, tremendous efforts have been made to
develop and implement MS methodologies for the study of the monomeric constituents of nucleic
acids.*!3-+¢ Biemann and McColskey elucidated detailed fragmentation pathways for the major
ions present in both electron ionization (EI) and chemical ionization (CI) mass spectra of simple
purine and pyrimidine nucleosides.'®-'® Derivatization, which is of value in many cases, requires an
additional sample manipulation step, and may produce unwanted and unexpected side products.'*>2

1.2.1 ELectrON IMPACT lONIZATION-MS FOR THE DEeTECTION OF DNA ADDUCTS

So far the biological significance of cytosine methylation has not been fully understood, but there is
growing evidence suggesting a link between the development of human cancer and the perturbation
of the methylation patterns due to the lack of DNA cytosine methyltransferase (Mtase) substrate
specificity. A novel in vitro assay called mass tagging was developed, which permitted quantifica-
tion of the DNA substrate preferences of cytosine Mtases.?* This approach involved the labeling of
target cytosine residues in the synthetic DNA duplexes with stable isotopes such as '"N. Methylation
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was then measured by GC-EI-MS to determine the formation of 5-methylcytosine (5 mC) and DNA.
Substrate selectivity was then determined through MS by the absence or presence of the label in
5 mC. This mass-tagging approach has proven to be a powerful tool for examining the substrate
selectivity of cytosine DNA Mtases and could easily be adapted to the study of other kinds
of selectivity.

1.2.2 ELecTRON-CAPTURE lONIZATION-MS FOR THE DEeTecTioN oF DNA ApbucTs

Electron capture (EC) is a sensitive ionization technique for MS analysis, providing selectivity
toward electrophoric compounds. Advances in instrumentation have led to a more widespread appli-
cation of this method in biomedical and pharmaceutical analysis.

Fedtke and Swenberg contributed a short review of MS techniques for DNA adducts, with
emphasis on electron-capture negative ion chemical ionization-mass spectrometry (EC-MS) detec-
tion, especially with regard to their method for N?,3-ethenoguanine.>* They included in their work,
a summary of earlier and more general reviews on the detection of DNA adducts as well as the
normal constituents of DNA. Similarly, Giese et al. emphasized their own work in a short review on
the same general subject, but with more attention to method development and instrumental aspects
of EC-MS.? Detection of DNA adducts by means of different types of ionization techniques has
also been reviewed.?¢-%

Electrophores are compounds that can be readily detected by the two closely related gas-phase
detection techniques of EC-MS and electron-capture detection (ECD). These two analyses require
that the electrophore be both thermally stable and volatile.?*3! Usually, the compound is delivered
to one of these detectors as a peak eluting from a GC column, although a direct insertion probe and
a liquid chromatography (LC) belt interface can also be linked to the EC-MS instrument.’*-!

In ECD, a gas-phase current of electrons is monitored, and the electrophore reduces the current
by capturing one of the electrons. Similar EC takes place in the EC-MS, but under partial vacuum
conditions, and the ion(s) formed from the analyte are measured instead. Once an electrophore cap-
tures an electron, it becomes an anion radical and it can either exist long enough to reach the detec-
tor or immediately fragment.

For standards, the two detectors are similarly sensitive, but the greater specificity of the EC-MS
makes it considerably more powerful for biological samples. Aside from special analytes that are
unusually volatile or nonvolatile, it is difficult to reach the low picogram level by GC-ECD when real
samples requiring electrophore derivatization are tested.’>* Largely, this is because electrophoric
contaminants are present or formed in the reagents and solvents during sample preparation.?

DNA adducts, due to their lack of volatility and thermal stability, are not good electrophores for
detection by GC-EC-MS. Therefore, as part of sample preparation, one or more chemical reactions
are necessary to make the DNA adducts available for detection by GC-EC-MS.

It must be kept in mind that the overall electrophore response in the GC-EC-MS is a combination
of the recovery of the compound from the GC part into the EC ion source; the inherent EC proper-
ties of the compound; other events (e.g., wall effects) in the ion source; and the transmission effi-
ciency (including the lifetime) of the electrophore anion to the detector.> A strong electrophore can
be detected as a pure standard at the low attomole level on a modern instrument.?

Typically, the DNA adduct is converted into an electrophore, which is detected as either a parent
anion radical (no dissociative EC) or as an exclusive anion fragment (dissociative EC), which is
formed along with the corresponding neutral. Either way, the electrophore that is typically selected
forms a single ion (aside from the associated isotope peak) maximizing the sensitivity. Ideally, the
electrophore-labeled DNA adduct would give two or three anion fragments in similar amounts, and
their ratio would be checked for each sample as an extra guard against interferences. This would be
worth the slightly higher detection limit.

Although some standards of derivatized DNA adducts can be detected by GC-ECD (Table 1.1),
DNA adducts that are derived from biological samples are usually only detectable by GC-EC-MS.
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