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Preface

This textbook is suitable for either a sophomore level course or for a
junior- or senior-level course. The only prerequisite is calculus. If the text
is to be taught at the sophomore level, one should probably spend more
time on the earlier chapters and omit most of the more difficult optional
sections. On the other hand, if the course is to be taught on the junior or
senior level, the instructor should probably spend less time on the early
chapters and cover more of the optional material. The explanations in the
text are given in sufficient detail so that students at either level will have
little trouble reading and understanding. To further aid the student, a large
number of examples have been worked out completely. Applications have
been scattered throughout the text rather than put together in a chapter at
the end. In this way they can be used to motivate new material and to
illustrate the relevance of the material that has just been presented. When
applications are included at the end of a text, they are more likely to be
omitted because of lack of time.

The text tries to give fairly complete coverage to a very broad subject.
Consequently, there is probably more material included than can possibly
be covered in a one-quarter or one-semester course. The instructor then
has some freedom in the choice of topics, and consequently the instructor
may design the course to meet the needs of the class. Some instructors may
decide to emphasize the mathematical theory in Chapters 3 and 4 and
others may decide to skip over these chapters and spend more time on the
applied topics in Chapters 5 and 6. As a general rule, if you ask n
mathematicians what should go into a course, you will get n different
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viii Preface

answers. Even if many of the topics in the text are omitted, the students
should get a feeling for the overall scope of the subject matter. Further-
more, many of the students may use their text later as a reference and
consequently may end up learning many of the optional topics on their
own; optional material is preceded by an asterisk. The following is a guide
to the various chapters in the text.

Chapter 1. The first two sections deal with systems of equations.
Sections 3 and 4 are concerned with matrices and matrix algebra. Most of
Section 5 is optional. The instructor should cover the material at the
beginning of this section, which includes an explanation of the notation
used for column vectors. The material on block multiplication may be
omitted at the discretion of the instructor. Block multiplication is used
later in the text in some of the optional sections in Chapters 6 and 7, but it
has been avoided in those sections that form the core of the text.

Chapter 2. This is a short chapter on determinants. Determinants will
be used later in the text for introducing such topics as linear independence
and eigenvalues.

Chapter 3. The basic theory of vector spaces is presented in this
chapter. All five sections should be covered.

Chapter 4. Chapter 4 is devoted to linear transformations. Instructors
wishing to present a more applied course may omit all or part of this
chapter.

Chapter 5. This is a long chapter on orthogonality and its applications.
Most of Sections 1, 2, 3, 6, and 7 should be covered if at all possible.
Section 4 on matrix norms is optional, but it is a prerequisite for Section 7
of Chapter 6 and the last five sections of Chapter 7. Section 5, on least
squares problems, is also listed as optional. This is one of the most
important applications of linear algebra and is well worth covering if time
permits. The last section is an optional section on orthogonal polynomials.
Orthogonal polynomials play an important role in many areas of mathe-
matics, but they never seem to get the attention they deserve in the
standard courses.

Chapter 6. This chapter treats one of the most important subjects in
linear algebra, eigenvalues. Sections 1 and 3 should definitely be covered.
Section 2 presents one of the main applications of eigenvalues. If the
instructor does not wish to cover the entire section, we recommend that the
material through Example 1 be presented. Section 4 deals with matrices
with complex entries. This section is optional, but it is recommended that
the material in the beginning of the section be covered so that the student
gets some exposure to the complex case. In this chapter the really impres-
sive nature of the applications of linear algebra should become apparent.
Sections 5 and 6 are optional sections which present some of these
applications. A discussion of the Perron-Frobenius theory of nonnegative
matrices is given in Section 7. The proofs are omitted. These are powerful
theorems and the proofs would be way beyond the scope of a first course.
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However, the theory is necessary for an understanding of the Leontief
input—output models. This is one of the nicest applications of linear
algebra.

Chapter 7. Although this chapter is optional, it may well be the most
important chapter for students who are going to work in industry. Instruc-
tors who want to incorporate numerics into the course may consider
teaching the first three sections of this chapter immediately after complet-
ing Chapter 1. Section 4 could then be taught with the section on matrix
norms in Chapter 5. The section on the singular value decomposition is
highly recommended. Only recently has this subject been given the recog-
nition it deserves. This section is included in Chapter 7 because of its
importance to numerical linear algebra, but it could just as well be covered
in Chapter 6. The most important algorithms presented in the last two
sections are more advanced in nature, and consequently they are only
outlined rather than presented in detail. Part of Section 9 is theoretical and
could be covered earlier in the text along with Section 7.
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Matrices and
Systems

of Equations

INTRODUCTION

Probably the most important problem in mathematics is that of
solving a system of linear equations. It would not be conservative to
estimate that well over 75 percent of all mathematical problems
encountered in scientific or industrial applications involve solving a
linear system at some stage. Using the methods of modern mathemat-
ics, it is often possible to take a sophisticated problem and reduce it
to a single system of linear equations. Linear systems arise in applica-
tions to such areas as business, economics, sociology, ecology, de-
mography, genetics, electronics, engineering, and physics. It seems
appropriate then that this text should begin with a section on linear
systems.




2 Matrices and Systems of Equations [Ch. 1

1. SYSTEMS OF LINEAR EQUATIONS

A linear equation in n unknowns is an equation of the form
ax, + ax,+--- +a,x, =0b

where a,, a,, .~ ., a, and b are real numbers and x,, x,, . . ., x,, are vari-
ables. A linear system of m equations in » unknowns is then a system of
the form

anx, +apx,+ - - +a,x, = b,

a,x, + ayx, + - - +a,,x, = b,
(1) :

a1 x, + a,,x, + -+ +a,.x, =b,

where g;’s and the b;’s are all real numbers. We will refer to systems of the
form (1) as m X n linear systems. The following are examples of linear
systems:

(@ x, +2x,=5 ®) x;—x,+x3=2 ©) x;+x,=2
2x,+3x,=38 2x,+ x,— x;3=4 x;—x,=1
X, =4

System (a) is a 2 X 2 system, (b) is a 2 X 3 system, and (c) is a 3 X 2 system.

By a solution to an m X n system, we mean an ordered n-tuple of
numbers (x,, X,, . . . , x,,) that satisfies all the equations of the system. For
example, the ordered pair (1, 2) is a solution to system (a), since

1-()+2-2)=5
2-(1)+3-(2) =38

The ordered triple (2, 0, 0) is a solution to system (b), since

1-2)—1-(0)+1-(0) =2
2-2)+1-(0)—-1-(0) =4
Actually, system (b) has many solutions. If a is any real number, it is easily
seen that the ordered triple (2, «, «) is a solution. However, system (c) has
no solution. It follows from the third equation that the first coordinate of

any solution would have to be 4. Using x, =4 in the first two equations,
we see that the second coordinate must satisfy

4+ x,=2
1

4 — x,
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Since there are no real numbers that satisfy both of these equations, the
system has no solution. If a linear system has no solution, we say that the
system is inconsistent. Thus system (c) is inconsistent, while systems (a) and
(b) are both consistent.

The set of all solutions to a linear system is called the solution set of the
system. If a system is inconsistent, its solution set is empty. A consistent
system will have a nonempty solution set. To solve a consistent system, one
must find its solution set.

2 X 2 Systems
Let us examine geometrically a system of the form
apx, + apx, = b,
ayx, + ayx, = b,

Each equation can be represented graphically as a line in the plane. The
ordered pair (x,, x,) will be a solution to the system if and only if it lies on
both lines. For example, consider the three systems

1) x,+x,=2 (i) x;, +x,=2 @) x;,+x,= 2

X, — X, =2 X +x,=1 —X,—Xx,=—2
The two lines in system (i) intersect at the point (2, 0). Thus {(2, 0)} is the
solution set to (i). In system (ii) the two lines are parallel. Therefore,
system (ii) is inconsistent and hence the solution set is &. The two

equations in system (iii) both represent the same line. Any point on that
line will be a solution to the system (see Figure 1.1.1).

‘} i3} A x, A x,

AN \ N

(i) (ii) (iii)

Figure 1.1.1
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In general, there are three possibilities: the lines intersect at a point, they
are parallel, or both equations represent the same line. The solution set
then contains either one, zero, or infinitely many points.

The situation is similar for m X n systems. If a consistent system has
exactly one solution, it is said to be independent,; otherwise, it is dependent.
We will see in the next section that if a linear system has more than one
solution, it must have infinitely many solutions. The following table
summarizes the three possibilities.

Type of System Number of Solutions
Inconsistent 0
Consistent and independent 1
Consistent and dependent Infinitely many

Equivalent Systems

Consider the two systems

(@) 3x, +2x,— x5 =—2 (b) 3x, +2x, — x3 =-2
X, = 3 =3x,— X3+ x5 =
2xy; = 4 3x, +2x, + x5 = 2

System (a) is easy to solve because it is clear from the last two equations
that x, = 3 and x; = 2. Using these values in the first equation, we get

3, +2:-3-2= -2
x, = =2
Thus the solution to the system is (—2, 3, 2). System (b) seems to be more
difficult to solve. Actually, system (b) has the same solution as system (a).
To see this, add the first two equations of the system
3x,+2x,— x5 =—2

—3x,— x,+x3= 5

x5 = 3

If (x,, x5, x5) is any solution to (b), it must satisfy all the equations of the
system. Thus it must satisfy any new equation formed by adding two of its
equations. Therefore, x, must equal 3. Similarly, (x,, x,, x;) must satisfy



Sec. 1] Systems of Linear Equations 5
the new equation formed by subtracting the first equation from the third:

3, +2x,+ x3= 2
3,4 2x,— x3=-2
2x,= 4

Therefore, any solution to systera (b) must also be a solution to system (a).
By a similar argument, it can be shown that any solution to (a) is also a
solution to (b). This can be done by subtracting the first equation from the
second:

X, = 3
3x, +2x,—x3 =2
—3x;,— X+x3= 5

and by adding the first and third equations:

3x,+2x,— x3=—2

s

2x, =

3x;+2x,+ x3= 2

Thus (x,, x,, x5) is a solution to system (b) if and only if it is a solution to
system (a). Therefore, both systems have the same solution set,

{(_2’ 3, 2)}

Definition. Two systems of equations involving the same variables are said
to be equivalent if they have the same solution set.

Clearly, if we interchange the order in which two equations of a system
are written, this will have no effect on the solution set. The reordered
system will be equivalent to the original system. For example, the systems

X, +2x, = 4 4x, + x, =6
3, — x, =2 and 3, — x, =2
4x,+ x, =6 x, +2x, = 4

clearly have the same solution set.
If one of the equations of a system is multiplied through by a nonzero
real number, this will have no effect on the solution set and the new system



6 Matrices and Systems of Equations [Ch. 1

will be equivalent to the original system. For example, the systems

X1+ x,+ x3=3 ' 2x, +2x, + 2x3; =6
and
—2x; — x5 +4x; =1 —2x,— x,+4x; =1

are equivalent.
If a multiple of one equation is added to another equation, the new
system will be equivalent to the original system. This follows since the

n-tuple (x,, . .., x,) will satisfy the two equations
a,x; + -+ +a,x, = b,
ax, + - +a,x, = b

if and only if it satisfies the equations

a,x, + -+ +a,x, = b,

i
(@ + agy)x, + - - - + (a,, + aq,)x, = b, + ab,
To summarize, there are three operations that can be used on a system
to obtain an equivalent system:

I. The order in which any two equations are written may be
interchanged.
II. Both sides of an equation may be multiplied by the same
nonzero real number.
III. A multiple of one equation may be added to another.

Given a system of equations, one can use these operations to obtain an
equivalent system that is easier to solve.

n X n Systems

Let us restrict ourselves to n X n systems for the remainder of this
section. We will show that if an n X n system is independent, then
operations I and III can be used to obtain an equivalent “triangular
system.”

Definition. A system is said to be in triangular form if in the kth equation
the coefficients of the first k — 1 variables are all zero and the coefficient
of x, is nonzero (k=1, ..., n).
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EXAMPLE 1. The system
3x, + 2x, + x5 =
Xy — X3 =12
2xy, = 4

is in triangular form, since in the second equation the coefficients are
0, 1, —1, respectively, and in the third equation the coefficients are 0, 0, 2,
respectively. Because of the triangular form, this system is easy to solve. It
follows from the third equation that x; = 2. Using this value in the second
equation, we obtain

xX,—2=2 or x, =4
Using x, = 4, x; =2 in the first equation, we end up with
3x, +2-44+2= 1
x, = -3
Thus the solution to the system is (—3, 4, 2).
Any n X n triangular system can be solved in the same manner as the
last example. First, the nth equation is solved for the value of x,. This

value is used in the (n — 1)st equation to solve for x,_,. The values x,, and

x,_, are used in the (n — 2)nd equation to solve for x,_,, and so on. We

will refer to this method of solving a triangular system as back substitution.

EXAMPLE 2. Solve the system

2x, — x, +3x3 — 2x, = 1
Xy — 2x3+ 3x, = 2
4x;+ 3x, =3
4x, = 4
SOLUTION. Using back substitution, we obtain
4x, = 4 xs= 1

4x3+3'1=3 X3= 0
x—2:-0+3-1=2 X, =
2x,—(-1)+3-0-2-1=1

I
|
s

x, = 1

Thus the solution is (1, —1, 0, 1).

If a system of equations is not triangular, we will use operations I and
III to try to obtain an equivalent system that is in triangular form.



