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Preface

This is an introductory textbook dealing with the statistical design and analysis of
experiments. It is an outgrowth of lecture notes from a course in design of experi-
ments that | have taught at the Georgia Institute of Technology over the past six years.
The book is intended for readers who have completed a first course in statistical
methods. The mathematical maturity that results from calculus would be helpful, but
not essential, and some familiarity with matrix algebra is required in the latter part of
Chapter 13 and Chapter 14. ‘

Becguse of the relatively modest mathematical prerequisites, the book can be used in
a second statistics course for undergraduate engineering, physical science, mathematics,
biology, and social science students. The material can be covered more rapidly, with
more emphasis on the mathematical aspects of the subject, in an experimental design
course for first-year graduate students. There are numerical examples illustrating most
of the design techniques, and this makes the book useful as a reference work for ex-
perimenters in various disciplines.

The book contains 15 chapters. Chapter 1 presents the basic phllosophy of the sta-
tistical approach to experimental design. Chapter 2 reviews elementary statistical
methods, and introduces terminology and notation used in subsequent chapters.

In Chapter 3, we begin the study of designs for experiments with a single factor.
The analysis of variance is introduced as the appropriate method of statistical analysis.
Chapters 4 and 5 continue the development of single-factor experiments, with random-
ized blocks, Latin squares, and related designs discussed in Chapter 4. Chapter 5
introduces incomplete block designs. Factorial designs are introduced in Chapter 6.
Chapter 7 presents a set of rules for deriving computing formulas for sums of squares
and expected mean squares for any balanced multifactor design.

The 2% and 3* factorial designs are introduced in Chapter 8. The 2% and 3 factorial
designs may be run in incomplete blocks by sacrificing information on certain interac-

vii
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tions. Procedures for constructing and analyzing these designs are given in Chapter 9.
The relatively high cost of industrial experimentation has led to the extensive use of
fractional 2¥ and 3% factorial designs, which are discussed in Chapter 10. The basic
presentation of multifactor designs is continued in Chapter 11, which discusses nested
arrangements. These are nonfactorial designs in which the levels of one factor are con-
tained entirely within the levels of another factor. Chapter 12 illustrates how random-
ization restrictions are employed in multifactor experiments. An example of such a
design would be running a factorial expeziment in a randomized block.

Regression analysis is introduced in Chapter 13 as a methodology for the analysis of
unplanned experiments. In Chapter 14 we discuss response surface methodology, a
collection of mathematical and statistical techniques for determining the optimum
operating conditions for industrial processes. This chapter concludes with a section
on evolutionary operation, a process control mechod developed initially for chemical
plants. The final chapter treats the analysis of covariance, which, like blocking, is a
methodoiogy for improving the precision of comparisons between treatments.

The book contains more material than can usually be covered comfortably in a first
course. Hopefully, the instructor will be able to vary his course content from one
offering to another, or perhaps discuss certain topics in greater depth, depending on
class interest. There are problem sets at the end of each substantative chapte}. . These
problems vary in scope from computational exercises designed to reinforce the funda-
mentals of the analysis of variance to extensions or elaborations of basic principles.

Many individuals have contributed toward the completion of the book. 1 thank
Dr. R. N. Lehrer for his support and for his providing resources to develop the manu-*
script. 1 have benefited from reviews of the manuscript by Professors H. M. Wads-
worth, K. S. Stephens, R. L. Rardin, R. G. Heikes, L. A. Johnson, and R. V. Fuller of
the Georgia Institute of Technology; Professor A. L. Dorris of the University of
Oklahoma; Professor J. J. Moder of the University of Miami; and Professor C. J. Tomp-
kins of the University of Virginia. Their constructive criticism and suggestions have
substantially improved the book.- Various drafts of the manuscript have been used in
my classes over the past two years, and I am grateful to the many students who cor-
rected numerical and typographical errors, and provided critical evaluation. J. R.
Black, G. N. Gollobin, R. E. Rosenthal, and R. D. Stewart were particularly helpful in
this respect. 1 am indebted to Professor 'E. S. Pearson and the Biometrika Trustees,
Wiley, Prentice-Hall, The Ronald Press, the editor of Biometrics, the editor of the
Annals of Statistics, the editor of Technometrics, the Institute of Mathematical
Statistics, and the American Statistical. Association for permission to use copyrighted
material. Finally, 1 thank Ms. Jeanie Hagen, Ms. Kaye Watkins, and Ms. Amelia L. N.
Williams for typing the several drafts of the manuscript.

Donglas C. Montgoméry
Atlanta, Georgia
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| Chapter One
Introduction

1-1 THE NEED FOR DESIGNED
EXPERIMENTS

Experiments are carried out by investigators in all fields of study either to discover
something about a particular process or to compare the effect of several conditions
on some phenomena. For example, suppose a metallurgical engineer is interested in
studying the effect of two different hardening processes, oil quenching and salt water
quenching, on an aluminum alloy. Here the objective of the experimenter is to de-
terminé the quenching solution that produces the maximum hardness for this partic-
ular alloy. The engineer decides to subject a number of alloy specimens to each
quenching medium and measure the hardness of the specimens after quenching. The
average hardness of the specimens treated in each quenching solution will be used to
determine which solution is best.
As we think about this experiment, a number of important questions come to mind.

1. .Are these two solutions the only quenching media of potential interest?

2. Are there any other factors that might affect hardness that should be investigated
or controlled in this experiment?

3. How many specimens of alloy should be tested in each quenching solution?
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4. How should the specimens be assigned to the quenching solutions, and in what
order should the data be collected?

5. What method of data analysis should be used’

6. What difference in average observed hardness between the two quenchmg media
will be considered important?

All of these questions, and perhaps many others, will have to be satisfactorily an-
swered before the experiment is performed.

In any experiment, the results and conclusions that can be drawn depend to a large
extent on the manner in which the data were collected. To illustrate this point, sup-
pose that the metallurgical engineer in the above experiment used specimens from one
heat in the oil quench and specimens from a second heat in the salt water quench.
Now when the mean hardness is compared, the engineer is unable to say how much of
the observed difference is due to the quenching media and how much is due to in-
herent differences between the heats.! Thus the method of data collection has ad-
versely affected the conclusions that can be drawn from the experiment.

12 BASIC PRINCIPLES OF
EXPERIMENTAL DESIGN

If an experiment is to be performed most efficiently, then a scientific approach to
planning the experiment must be considered. By the statistical design of experiments,
we refer to the process of planning the experiment so that appropriate data will be
collected, which may be analyzed by statistical methods resulting in valid and objec-
tive conclusions. The statistical approach to experimental design i% necessary if we
wish to draw meaningful conclusions from the data. When the problem involves data
that are subject to experimental errors, statistical methodology is the only objective
approach to analysis. Thus, there are two aspects to any experimental problem: the
design of the experiment and the statistical analysis of the data. These two subjects
are closely related, since the method of analysis depends directly on the design
employed.

The two basic principles of experimental design are replication and randomization,
By replication we mean a repetition. of the basic experiment. In the metallurgical éx-
periment above, a replication would consist of a specimen treated by oil quenching
and a specimen tested by salt water quenching. Thus, if five specimens are treated in
each quenching medium, we say that five replicates have been obtained. Replication
has two important properties. First, it allows the experimenter to obtain an estimate
of the experimental error. This estimate of error becomes a basic unit of measurement
for determining whether observed differences in the data are really statistically dif-
ferent. Second, if the sample mean (e.g., ¥) is used to estimate the effect of a factor in
the experiment, then replication permits the experimenter to obtain a more precise es-

1A statistician would say that the effects of quenching media and heat were confounded; thac is,
the two effects cannot be separated.
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timate of this effect; for if 02 is the variance of the data, and there are z replicates, _
then the variance of the sample mean is

19

o5 =

The practical implication of this is that if we had # = 1 replicate, and observed
y1 = 145 (oil quench) and y, = 147 (salt water quench) we would probably be unable
to make satisfactory inferences about the effect of the quenching medium. That is, the
observed difference could be due to experimental error. On the other hand, if » was
reasonably large, and the experimental error was sufficiently small, then if we observed
1 <¥2, we would be reasonably safe in concluding that salt water quenching pro-
duces a higher hardness in this particular aluminum alloy than does oil quenching.

Randomization is the cornerstone underlying the use of statistical methods in ex-
perimental design. By randomization we mean that both the allocation of the experi-
mental material and the order in which the individual runs or trials of the experiment
are to be performed are randomly determined. Statistical methods require that the ob-
servations (or errors) are independently distributed random variables. Randomization
usually makes this assumption valid. By properly randomizing the experiment, we will
also assist in “averaging out” the effects of extraneous factors that may be present.
For example, suppose that the specimens in the above experiment are of slightly dif-
ferent thicknesses, and the effectiveness of the quenching medium may be affected by
specimen thickness. If all the specimens subjected to the oil quench are thicker than
those subjected to the salt water quench, then we may be continually handicapping
one quenching medium over the other. Randomly assigning the specimens to the
quenching media will alleviate this problem.

In order to use the statistical approach to designing and analyzing an experiment, it
is necessary that everyone involved in the experiment have a clear idea in advance of
exactly what is to be studied, how the data is to be collected, and at least a qualitative
understanding of how this data is to be analyzed. An outline of the recommended
procedure is as follows:

1. " Recognition of and statement of the problem. This may seem to be a rather ob-
vious point, but in practice it is often not simple to realize that a problem requiring ex-
perimentation exists, and to develop a clear and generally accepted statement of this
problem. It is necessary to develop all ideas about the objectives of the experiment.
A clear statement of the problem often contributes substantially to a better under-
standing of the phenomena and the final solution of the problem.

2. Choice of factors and levels. The experimenter must select the independent
variables or factors to be investigated in the experiment. For ekample, in the hardness
testing experiment described previously, the single factor is quenching media. The
factors in an experiment may be either quantitative or qualitative. If they are quan-
titative, thought should be given as to how these factors are to be controlled at the
desired values and measured. We must also select the values or levels of the factors to
be used in the experiment. These levels may be chosen specifically, or selected at ran-
dom from the set of all possible factor levels.
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‘3. Selection of a response variable. In choosing a response or dependent variable,
the experimenter must be certain that the response to be measured really provides in-

* formation aboutothe problem under study. Thought must also be given to how the
_ response will be measured, and the probable accuracy of those measurements.

4. Choice of experimental design. This step is of primary importance in the experi-
mental process. The experimenter must determine the difference in true response he
wishes to detect and the magnitude of the risks he is willing ®o tolerate so that an ap-
propriate sample size (number of replicates) may be chosen. He must also determine .
the order in which the data will be collected and the method of randomization to be .
employed. It is a2lways necessary to maintain a balance between statistical accuracy
and cost. Most recommended experimental desigrs are both statistically efficient and
economical, so that the experimenter’s efforts to obtain statistical accuracy usually re-
sult in economic efficiency. A mathematical model for the experiment must also be
proposed, so that a statistical analysis of the data may be performed.

5, Performing the experiinent. This is the actual data collection process. The ex-
perimenter should carefully monitor the progress of the experiment to insure that it is
proceeding according to the plan. Particular attention should be paid to randomiza-
tion, measurement accuracy, and maintaining as uniform an experimental environment
as possible. '

6. Data a.nalykis. Statistical methods should be employed in analyzing the data
from the experiment. Numerical accuracy is an important concesn here, although
present-day computers have largely relieved the experimenter from this problem, and
simultaneously reduced the computational burdén. Graphical methods are also fre-
quently useful in the data analysis process. :

7. Conclusions and recommendations. Once the data has been ajnlyzed, the ex-
perimenter may draw conclusions or inferences about his results. The statistical in-
ferences must be physically interpreted, and the practical significance of these findings

-evaluated. Then recommendations concerning these findings must be made. These

recommendations may include a further round of experiments, as experimentation is
usually an iterative process, with one experiment answering some questions and simul-
taneously posing others. In presenting his results and conclusions to others, the ex—

_ perimenter should be careful to minimize the use of unnecessary statistical termi-

nology, and phrase his information as simply as possible. The use of charts and graphs
is a very effective way to present important experimental results to management.

In this book we will concentrate primarily on step 4, the choice of experimental de-
sign, and step 6, the statistical analysis of the data. However, throughout the book we
will emphasize the importance of the entire seven-step process.

13 HISTORICAL PERSPECTIVE

The late Sir Ronald A. Fisher was the innovator in the use of statistical méthods in ex-
perimenial design. For several years he was responsible for statistics and data analysis
at the Rothamsted ‘Agricultural Experiment Station in London, England. Fisher de-
veloped and first used the analysis of variance as the primary method of statistical
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analysis in experimental design. Frank Yates worked with Fisher at the Rotham-
sted station, and the two collaborated on many projects. Yates also became a primary
contributor to the literature of experimental design. In 1933 Fisher took a professor-
ship at the University of London. He later was on thé faculty of Cambridge Univer-
sity, and held visiting professorships at several universities throughout the world. '

Many of the early applications of experimental design methodology were in the
agricultural and biological sciences. As a result, much of the terminology of the dis-
cipline is derived from this agricultural background. For example, an agricultural
scientist may plant a variety of a crop in several plots, then apply different fertilizers
or treatments to the plots, and observe the effect of the fertilizers on crop yield. Each
plot will produce one observation on yield. An engineer or physical scientist, how-
ever, will think of the independent variable or factor that affects his response (rather
than a treatment) and use the term run to characterize one observation. However,

"much experimental design terminology, such as “treatment,” “plot,” and “block”
have lost their strictly agricultural connotation, and are in wide use in many fields of
application. We will use the phrases “levels of the factor” and ‘“‘treatment” inter-
changeably. Sometimes ‘‘treatment combination” will be tsed to denote a particular
combination of factor levels to be used in one run of the experiment.

Modern-day experimental design methods are widely employed in all fields of in-
quiry. Agricultural science, biology, medicine, the engineering sciences, the physical
sciences, and the social sciences are disciplines where the statistical approach to the
design and analysis of experiments is an accepted practice.

1-4 AN EXAMPLE OF A
DESIGNED EXPERIMENT

To illustrate some of the preceding ideas, we present an example of a designed experi-
ment. A hardness testing machine presses a rod with a pointed tip into a metal spec-
imen with a known force. By measuring the depth of the depression caused by the
tip, the hardness of the specimen is determined. - Two different tips are available for
this machine, and although the precision (variability) of the two tips seems to be the
same, it is suspected that one tip produces different hardness readings than the other.

An experiment could be performed as follows. A number of metal specimens (e.g.,
10) could be randomly selected. Half of these specimens could be tested by tip 1 and
the other half by tip 2. The exact assignment of specimens to tips would be randomly
determined. After the hardness data have been collected, the average hardness of the
two samples could be compared using the ¢ test. That is, if #, specimens are tested
with tip 1 and#, specimens are tested with tip 2, and ¥; and 3, are the resulting aver-
age hardness from tips 1 and 2, respectively, then assuming that the hardness data is
normally distributed, the test statistic is

to = —1—_—— (1-1)
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where
1/2
Z (yl] yl) + Z (y2] yz)
s, =| =2 I 1-2)
L ny+ny -2 :

is the pooled or combined estimate of the variability (experimental error). Forrhally
stated, the hypothesis we are testing is

Ho: My = U,
Hy: uy Fu,

where u; and y, are the true means of the distributions of hardness values produced
by tips 1 and 2, respectively. We will reject the null hypothesis Ho: ) = iy if

leol > tapa,nyem, -2

. where taj2,n+n,-2 is the upper a/2 percentage point of the ¢ distribution with
ny+ny- 2 degrces of freedom

A little reflection will reveal a serious disadvantage of this design. Suppose the metal
specimens were cut from different bar stock that were produced in different heats, or
were not exactly hpmogeneous in some other way that might affect the hardness. This
lack of homogeneity between specimens will contribute to the vanab:hty of the hard-
ness measurements and tend to inflate the experimental error, thus making a true dif-
ference between tips harder to detect.

To protect against this possibility, consider an alternate experimental design. As-
sume that each specimen is large enough so that rwo hardness determinations may be
made on it. This alternative design would consist of dmdmg cach specimen into two
parts, then randomly assigning one tip to one half of each specimen and the other tip
to the remaining half. The order in which the tips are tested for a particular specimen
would also be randomly sclectéd The experiment, when performed according to this
design with 10 specimens, produced the data shown in Table 1-1.

Table 1-1 Data for the Hardness
Testing Experiment

Specimen - Tip1 Tip 2
1 7 6
2 3 3
3 3 5
4 4 3
5 8 8
6 3 2
7 2 4
8 9 9
9 5 4

10 4 5




