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PREFACE TO THE SERIES

In the course of nearly every program of research in organic chemistry, the inves-
tigator finds it necessary to use several of the better-known synthetic reactions.
To discover the optimum conditions for the application of even the most familiar
one to a compound not previously subjected to the reaction often requires an
extensive search of the literature; even then a series of experiments may be nec-
essary. When the results of the investigation are published, the synthesis, which
may have required months of work, is usually described without comment. The
background of knowledge and experience gained in the literature search and
experimentation is thus lost to those who subsequently have occasion to apply
the general method. The student of preparative organic chemistry faces similar
difficulties. The textbooks and laboratory manuals furnish numerous examples of
the application of various syntheses, but only rarely do they convey an accurate
conception of the scope and usefulness of the processes.

For many years American organic chemists have discussed these problems.
The plan of compiling critical discussions of the more important reactions thus
was evolved. The volumes of Organic Reactions are collections of chapters each
devoted to a single reaction, or a definite phase of a reaction, of wide applicabil-
ity. The authors have had experience with the processes surveyed. The subjects
are presented from the preparative viewpoint, and particular attention is given
to limitations, interfering influences, effects of structure, and the selection of
experimental techniques. Each chapter includes several detailed procedures illus-
trating the significant modifications of the method. Most of these procedures have
been found satisfactory by the author or one of the editors, but unlike those in
Organic Synthesis, they have not been subjected to careful testing in two or more
laboratories.

Each chapter contains tables that include all the examples of the reaction under
consideration that the author has been able to find. It is inevitable, however,
that in the search of the literature some examples will be missed, especially
when the reaction is used as one step in an extended synthesis. Nevertheless, the
investigator will be able to use the tables and their accompanying bibliographies
in place of most or all of the literature search so often required.

Because of the systematic arrangement of the material in the chapters and the
entries in the tables, users of the books will be able to find information desired
by reference to the table of contents of the appropriate chapter. In the interest
of economy, the entries in the indices have been kept to a minimum, and, in
particular, the compounds listed in the tables are not repeated in the indices.

v



vi PREFACE TO THE SERIES

The success of this publication, which will appear periodically, depends upon
the cooperation of organic chemists and their willingness to devote time and
effort to the preparation of the chapters. They have manifested their interest
already by the almost unanimous acceptance of invitations to contribute to the
work. The editors will welcome their continued interest and their suggestions for
improvements in Organic Reactions.

Chemists who are considering the preparation of a manuscript for submission
to Organic Reactions are urged to contact the Editor-in-Chief.
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4 ORGANIC REACTIONS

INTRODUCTION

Epoxidations, heteroatom oxidations, and Y-H insertions constitute the best
investigated oxidations by dioxiranes. An overview of these transformations is
displayed in the rosette of Scheme 1. These preparatively useful oxidations have
been extensively reviewed during the last decade.!~'* In a previous chapter,'?
we presented the epoxidation of double bonds [7 bonds in simple alkenes and
those functionalized with electron donors (ED), electron acceptors (EA), and
with both ED and EA substituents; case 1 in the rosette] with either isolated or
in situ generated dioxiranes. The recent developments in the dioxirane-mediated
asymmetric epoxidation have also been extensively covered there.!> The present
chapter concerns the remaining oxidations in the rosette of Scheme 1, that is,
epoxidation of the double bonds in the cumulenes, such as allenes (transforma-
tion 2), acetylenes (transformation 3), and arenes (transformation 4); the oxidation
of heteroatom functionalities, mainly lone pairs on sulfur (transformation 5),
on nitrogen (transformations 6 and 7), and on oxygen as the deoxygenation of
N-oxides (transformation 8); the oxidation of C=Y functionalities (e.g., trans-
formation 9), Y-H insertions (o bonds) such as C—H in alkanes (transformation
10) and Si-H in silanes (transformation 11); and the oxidation of organometallic
substrates including metal (transformation 12) and ligand-sphere oxidation.

Phe _/N O=Mn" (salen) 0
To
Me

.NP Mn!! E
J\OH V\.\ Ph»S'i (salen) )ﬁ/ /@/ O--
| “H
/\[< Me %
H .
0 N, % Q
Ph)kPh : Ph)kPh - - :
~ 0
[ | \ HO OH

\
N
0 Me )H/ \(LS(O)Ar or jfLsozAr

NO,

Scheme 1. An overview of dioxirane oxidations (Np = I-naphthyl).
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MECHANISM

Allenes, Alkynes, and Arenes

Although the products of the dioxirane oxidation of allenes, alkynes, and
arenes are usually more complex than those of the epoxidation of simple C=C
double bonds, the initial step of the oxidation is usually epoxidation. Therefore,
the same mechanism that has been extensively discussed in the previous chapter!3
also applies in these reactions. The oxygen transfer proceeds with complete
retention of the initial olefin configuration through the concerted spiro transi-
tion state.!> An example is shown in Eq. 1, in which the oxidation of the chiral
allene proceeds in nearly quantitative yield (95%) with preservation of the starting
allene configuration in the spiro-bisepoxide.!®

0
__Q>< . /}Q\K/i (95%) (Eq. 1)
H 0

acetone, K>COs,
rt, 20 min

Since the initial epoxidation products of the allenes, alkynes, and arenes
are usually labile substances, they may undergo subsequent reactions, which
include further oxidation by dioxirane other than epoxidation. For example,
in the dimethyldioxirane (DMD) oxidation of the phenanthrene derivative in
Scheme 2,!” the second oxidation by DMD involves C—H insertion instead of
epoxidation.

0 )
® 0 )

- — > (77%)
O OH acetone O O

\ epoxidation

[ rearrangement ‘ OH
(0] ———— (100%)
e e

Scheme 2. DMD oxidation of 9-hydroxyphenanthrene.

C-H insertion

Heteroatom Substrates

Through a detailed study of the competitive oxidation of the sulfide versus sulf-
oxide functionalities in thianthrene 5-oxide (SSO),"® a pronounced electrophilic
character has been demonstrated for DMD and methyl(trifluoromethyl)dioxirane
(TFD).'2% Thus, dioxiranes prefer to oxidize the sulfide over the sulfoxide func-
tionality, a typical behavior of an electrophilic oxidant (Scheme 3). Also, the
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0. CH; (CFy) 0
. S O\\ /,O
(f]@ —— Q0 CLD
S f.) S
SSO 1
(major) (minor)

Scheme 3. Competitive oxidation of the sulfide vs. sulfoxide functionalities in thianth-
rene-5-oxide (SSO) by the dioxiranes DMD and TFD.

kinetic data® for the oxidation of sulfides and sulfoxides have revealed the elec-
trophilic character of dioxiranes. Thus, the heteroatom oxidations by dioxirane
are generally explained in terms of a Sy2-type attack of the heteroatom lone pair
on the dioxirane peroxide o *-orbital.?!-??

A possible single-electron-transfer (SET) mechanism in N-oxidations®*>* has
been discounted?' on the basis of kinetic experiments by comparing the relative
rates of oxygen transfer by DMD with those of alkylation by methyl iodide. For
the latter, an SN2 mechanism unequivocally applies. Similar reactivities (linear
correlation of rates) for N-oxidation also establish the Sy2 pathway for dioxirane
oxidations. This conclusion is supported by a kinetic study of the DMD oxidation
of substituted N,N-dimethylanilines.?

The heterolytic mechanism is presumably also valid for a variety of oxygen-
type nucleophiles, e.g., amine N-oxides, CIO~, HO~, HOO~, RO~, ROO™,
RC(0)O0~, and ~0OS(0),00~, which all catalyze the decomposition of dioxi-
ranes with the evolution of molecular oxygen.?®?” A typical case is illustrated
with 4-dimethylaminopyridine N-oxide in Scheme 4.2 The chemiluminescence
emitted by the generated singlet oxygen confirms the heterolytic nature of the
dioxirane decomposition.?® Further support for this mechanism has been provided
by theoretical work, from which it was concluded that the oxidation of primary
amines by DMD does not proceed by a radical process.?

o
| |
NMe,

X NMe,
/ N\ + m o SN2 I o
Me)N _N—O + 3—8 N7 i' o, + A
|
(ON 0:)
&

L.
N
i t\‘ "

hv (1268 nm)

Scheme 4. SN2 Mechanism for the N-oxide-induced decomposition of DMD.
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Alkanes and Silanes

Two mechanisms have been suggested for the insertion of an oxygen atom
into the Y-H bond of alkanes and silanes. Abundant evidence, which includes
kinetics,? kinetic isotope effects,’® and stereoselectivity,’! all unequivocally sup-
port a concerted oxenoid-type mechanism (Figure 1).

Nonetheless, radical reactivity has been observed recently and interpreted
in terms of the dioxirane diradical as the active oxidant, in particular, the so-
called “molecule-induced homolysis.”*?>~3 It has also been proposed*® that alkane
hydroxylation may proceed by a rate-determining oxygen insertion into the alkane
C-H bond to generate a caged radical pair, followed by very fast collapse (oxygen
rebound) to hydroxylated products (Scheme 5).

That hydroxylation of (R)-2-phenylbutane proceeds with 100% retention to
furnish (§)-2-phenylbutan-2-ol for both DMD?” and TFD?! sheds serious doubt
on the involvement of out-of-cage radical intermediates in such C-H oxidations

(Eq. 2).

0-0 Kslow
e %P e

Ph
(R)
£
H H ko= 101571
SN ~ | rot ¥ ~ |
00| — “\' (0.0 P — k 0..0"
Et} % 8 k Y -— = K =
L // Et” Yo ,_‘) PR\ :J
(8) radical pair (R) radical pair
keone keb > 10Ms! \ J
fast Kife (
El‘)\OH radical chain Et‘)\OH + HO/K”HE[
Ph Ph Ph
(S) ) (R)

Scheme 5. Concerted oxenoid-type (kconc) VS. oxygen-rebound (k) mechanisms for
C-H insertion by DMD.

H , DMD or TFD H(}\/ (>90%)
’ —_—_— - 4 >90%
Ph)\Et Ph” Et (Eq. 2)
(R) 70.9% ee (S) 71.0% ee
R
R_ =
5+\<R-""7/\CH C
H/Onc')s_ 3(CF3)

Figure 1. Concerted oxenoid-type transition state for C-H insertion.
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The tertiary benzyl radical derived from this optically active substrate is one
of the fastest radical clocks (the configurational persistence of this radical is esti-
mated to be about 10~!! seconds)®® and serves as a definitive probe for the inter-
vention of radical intermediates. Thus, as shown in Scheme 5,%” if a caged radical
pair is formed, collapse with configurational conservation by oxygen rebound
(kwep) must be faster than diffusion out of the cage (kgifr), as well as in-cage
isomerization (k.o ), since such competitive processes would lead to racemization.

As in the C—H oxidation of (R)-2-phenylbutane (Eq. 2), the hydroxylation
of the (+)-(S)-(e-Np)PhMeSiH silane enantiomer by both dioxiranes DMD and
TFD proceeds with complete retention of configuration to afford (4)-(R)-
(-Np)PhMeSiOH (Eq. 3).3*4° Therefore, a similar mechanism would appear
to apply for the oxidation of C-H and Si—H bonds.

Np H DMD or TFD Npg OH .
Ph > “Me Ph " Me (Eq. 3)
(S) 96.5% ee (R) 97.0% ee

Most recent theoretical work on oxygen transfer for C-H insertion supports
the concerted spiro oxenoid-type mechanism, in which the transition structure
has considerable dipolar and also some diradical character.*!~** Under typical
preparative conditions, for example, in the presence of molecular oxygen, it was
concluded that a concerted mechanism applies for the C—H insertion.

SCOPE AND LIMITATIONS

The oxidation of double bonds (r bonds) in cumulenes (allenes, acetylenes)
and arenes, of heteroatom functionalities (lone-pair electrons), of transition-metal
complexes, and Y-H insertions (o bonds) has been successfully performed, either
with isolated or with in situ generated dioxiranes. Thus, a broad spectrum of
substrates has been oxidized by dioxiranes. The pertinent examples are listed in
Tables 1-7 (see Tabular Survey). An isolated (distilled) acetone solution [DMD
(isol.)] is the most often used dioxirane owing to its convenient preparation and
relatively low cost. Although methyl(trifluoromethyl)dioxirane (TFD) is consid-
erably more reactive than DMD, its application is limited because of its high
cost and the high volatility of trifluoroacetone. With DMD (isol.), the scale of
the reaction is usually limited to 100 mmol because DMD (isol.) is quite dilute
(ca. 0.08 M). In the case of TFD (ca. 0.6 M), the prohibitive cost of trifluo-
roacetone obliges small-scale (ca. 10 mmol) applications. When a large-scale
preparation is desired, the in situ mode [DMD (in situ)] is recommended, for
which both biphasic**~4" and homogeneous***’ media are available. It should
be kept in mind that when one operates in aqueous solution, both the substrate
and the oxidized products should resist hydrolysis and persist at temperatures
above 0°. An advantage of the in situ mode is that it may be carried out with
less than stoichiometric amounts (<0.5 equiv.) of ketone, which is important for
enantioselective oxidations.’0~
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Allenes, Alkynes, and Arenes

Representative examples of oxidations of allenes, alkynes, and arenes are col-
lected in the rosette of Scheme 6.

The products of dioxirane oxidation of allenes depend on the reaction condi-
tions and the substrate structure. Unfunctionalized allenes give the corresponding
spiro-bisepoxides usually in good yields'®>* at subambient temperatures when
dry dioxirane solution is employed (Eq. 1).'® If the allene is unsymmetrically
substituted, a mixture of regioisomers is obtained, and the selectivity is highly
dependent on the allene structure.'®>> Since these spiro-bisepoxides are labile
toward hydrolysis, the in situ oxidation mode is not recommended. If the allene
substrate contains a hydroxy functionality, the latter will react with the spiro-
bisepoxide intermediate to form ring-opened and/or rearranged products.3~%
The final products may be cyclic or acyclic, depending on the reaction condi-
tions, the chain-length of the substituent that contains the hydroxy functionality,
and the other substituents on the allene. For example, when the hydroxyallene
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Scheme 6. An overview of dioxirane oxidations of allenes, alkynes, and arenes.



