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PREFACE

The rapidly decreasing time lag between scientific disecoveries and appli-
cations imposes ever-increasing demands on the mathematical equipment
of scientists and engineers. Although the mathematical preparation of
engineering students has been strengthened materially in the past thirty
years, the introduction of courses beyond the traditional “terminal course”
in calculus has been largely confined to a few leading institutions. The
reluctance to broaden significantly the program of instruction in mathe-
maties can be attributed in part to the erowded engineering curricula, in
part to the failure to sense the central position of mathematics in sciences
and technology, and in part to the scarcity of suitable staffs and instruc-
tional media. The broadening, however, is inevitable, for it is now gen-
erally recognized that no professional engineer can keep abreast of scien-
tific developments without substantially extending his mathematical hori-
ZONS.

This book, in common with its predecessor written by the senior author
some twenty-five years ago, has as its' main aim a sound extension of such
horizons. The authors not only have been guided by their subjective
appraisal of the live present-day needs of the engineering profession but
have also taken into account the views of the leaders of engineering
thought as expressed in numerous conferences and symposia on engineer-
ing education sponsored by the National Science Foundation, the American
Society of Engineering Education, and its predecessor the Society for the
Promotion of Engineering Education.

There are many conflicting and often prejudiced currents of thought as
to how mathematics should be presented to students of applied sciences.
Some believe that mathematics is one whole and indivisible and hence
should be presented unto all alike, regardless of the differing creeds. Others
are content with a catalogue of useful formulas, rules, and devices for
solving problems. The authors think that these two extreme viewpoints
are somewhat limited, since they recognize only two of the many facets of
mathematics. A preoccupation with the logic of mathematics and the over-
emphasis of a convention called rigor are among the best known means for
stifling interest in mathematics as a crutch to common sense. On the other
hand, a presentation which puts applications above the medium making
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vi PREFACE

applications possible is sterile, because it gives no inkling of the supreme
importance of generalizations and abstractions in applications. The au-
thors have tried to strike a balance which would make this book both a
sound and an inspiring introduction to applied mathematics.

The material in this book appears in nine chapters, each of which is
complete and virtually independent of the others. Occasional eross refer-
ences to other chapters are imtended to correlate the topics and to enhance
the usefulness of the book as a reference volume. Each chapter is sub-
divided into funetional parts, many of which also form an organized whole.
The earlier parts of each chapter are less advanced and should serve as
an introduction to more difficult topies treated in the later parts. The
text material set in small type usually deals with generalizations and de-
velops the less familiar concepts which are sure to grow in importance in
applications.

The choice of topics is based on the authors’ estimate of the frequency
with which the subjects treated occur in applications. The illustrative
material, examples, and problems have been chosen more for their value
in emphasizing the underlying principles than as a collection of instances
of dramatic uses of mathematics in specific situations confronting prac-
tieing engineers.

Although the book is written so as to require little, if any, outside help,
the reader is cautioned that no amount of exposition can serve as a substi-
tute for concentration in following the course of the argument in a serious
discipline. In order to facilitate the understanding of the principles and
to cultivate the art of formulating physical problems in the language of
mathematics, numerous illustrative examples are worked out in detail.
The authors believe with Newton that exempla non minus doceunt guam
precaepla.

1. 8. Sokolnikoff
R. M. Redheffer



TO THE INSTRUCTOR

In the sense that a working course in caleulus is the sole technical pre-
requisite, this book is suitable for the beginner in applied mathematics.
But when viewed in the light of the present-day requirements of the engi-
neering profession, the text includes a large amount of material of direct
interest to practicing engineers.

Tt is certain that within the next twenty years the methods of functional
analysis and, in particular, the Hilbert space theory will be in general use
in technology. A foundation for the assimilation of the function-space
concepts should be laid now, and we did not hesitate to do so in several
places in this book.

We have arranged the contents in nine independent chapters which, in
turn, are subdivided into parts, most of which can be read independently
of the rest. The earlier parts of each chapter are less advanced, and our
experience has shown that several introductory courses for students of sei-
ence and technology can be based on the material contained in the earlier
parts. When taken in sequence, this book has ample substance for four
consecutive semester courses meeting three hours a week.

This book is also suitable for courses in mathematical analysis bearing
such labels as ordinary differential equations, partial differential equations,
vector analysis, advanced calculus, complex variable, and so on.

Thus Chap. 1, when supplemented by Secs. 12 to 14 of Chap. 2, has
adequate material for a solid semester course in ordinary differential equa-
tions. Instructors wishing to include an introduction to numerical meth-
ods of solutions of differential equations will find suitable material in Secs.
14 to 18 of Chap. 9. The use of Laplace transforms in solving differential
equations is discussed in Appendix B, which includes, among other things,
a meaningful introductory presentation of the “Dirac delta function.”

Chapter 6, together with Secs. 18 to 25 of Chap. 2, has ample material
for a semester course in partial differential equations.

Chapters 4 and 5 have sufficient content for a modern course in vector
analysis.

Chapter 7, preceded by the relevant topics on line integrals in Chap. 5,
is adequate for an introductory course in complex variable theory.

Chapter 8 can be used in a semester course on probability theory and
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applications meeting two hours a week. A course entitled ‘“Probability
and Numerical Methods” meeting three hours a week can be based on
the material in Chaps. 8 and 9.

Although this book was written primarily for students of physical sci-
ences, it is unlikely that a liberal arts student who followed it in an ad-
vanced calculus course would be obliged to ‘“unlearn” anything in his
subsequent studies.

The contents of this book include what we believe should be the mini-
mum mathematical equipment of a scientific engineer. It may not be out
of place to note that the mathematical preparation of physicists and engi-
neers in Russia exceeds the minimum laid down here. While the curricula
of only a few leading American engineering colleges provide now for more
than one year of mathematics beyond caleulus, their number will continue
to increase with the realization that the time allotted to mathematics is a
sound capital investment, yielding excellent returns both in the time gained
in professional studies and in the depth of penetration.
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The power and effectiveness of mathematical methods in the study of
natural sciences stem, to a large extent, from the unambiguous language
of mathematics, with the aid of which the laws governing natural phe-
nomena can be formulated. Many natural laws, especially those con-
cerned with rates of change, can be phrased as equations involving deriva-
tives or differentials. For example, when a verbal statement of Newton’s
second law of motion is translated into mathematical symbols, there
results an equation relating time derivatives of displacements to forces.
A study of such equations then provides a complete qualitative and
quantitative characterization of the behavior of mechanical systems under
the action of forces. Several broad types of equations studied in this
book characterize physical situations of great diversity and practical
interest.

The first half of this chapter is concerned with preliminaries and special
techniques devised for the solution of the first-order equations arising
commonly in applications. The second half contains a comprehensive
treatment of linear differential equations with constant coefficients and
an introduction to linear equations with variable coefficients. Linear
equations occupy a prominent place in the study of the response of elastic
structures to impressed forces and in the analysis of electrical circuits and
servomechanisms. They also appear in numerous boundary-value problems
in the theory of diffusion and heat flow, in quantum mechanics and fluid
mechanics, and in electromagnetic theory.

PRELIMINARY REMARKS AND ORIENTATION

1. Definition of Terms and Generalities. Any function containing var-
iables and their derivatives (or differentials) is called a differential expres-
ston, and every equation involving differential expressions is called a
differential equation. Differential equations are divided into two classes,
ordinary and parttal. The former contain only one independent variable
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and derivatives with respect to it. The latter contain more than one
independent variable.

The order of the highest derivative contained in a differential equation
is called the order of the differential equation. Thus

dgy)4 dy
)43+ &2 =0
<d$2 dx v

is an ordinary differential equation of order 2, and

63 2 aQy
(_y) + 3 + yat =0
o dx at

is a partial differential equation of order 3.
A function y = ¢(x) is said to be a solution of the differential equation

F(I‘,.l/,'l/l) = 0) (1'1)

if, on the substitution of y = ¢(x) and y’ = &'(x) in the left-hand member
of (1-1), the latter vanishes identically.! Again, y = o(x) is a solution
of the second-order equation F(x,y,y’,y"’) = 0 when the substitution
y=9@),y =¢@),y = ¢’ ) reduces this to an identity in z. Simi-
larly for equations of order n.

For example, the first-order differential equation

y 4+ 2xy — e =0 (1-2)

2 “ ; o N
, because the substitution of y = x¢e™ and y =

*in (1-2) reduces it to an identity 0 = 0. Also, the equation
¥'+y=20

has a solution 7 = sin z, as can be easily verified by substitution.
We begin our study of differential equations with the first-order equation
(1-1), which we suppose can be solved for ¥’ to yield the equation

y = fy). (1-3)

For reasons which will become clear presently, we shall always assume
that f(z,y) is a continuous function throughout some region in the xy
plane, and we shall study the solutions of (1-3) [or, equivalently, of (1-1)]
in that region.

The geometrical meaning of the term solution of (1-3) is suggested at
once by the interpretation of the derivative y’ as the slope of the tangent
line to some curve y = ¢(x), for if (z,y) is a point on the curve y = (),

has a solution y = xe™

€T

2 _
e — 2

! Here, as elsewhere in this book, primes are used to denote differentiation: y' = dy/dr,
y” =d%y/d2?, ...,y = dy/dat.
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and if at every point of this curve the slope is equal to f(x,y), then ¢(x) is
a solution of (1-3).

One can get an idea of the shape of the curve y = ¢(z) in the following
way: Let us choose a point (zo,y0) and compute

¥ = f(xo.y0). (1-4)

The number f(zo,J0) determines a direction of the curve at (xo,yo). Now,
let (x1,51) be a point near (xo,y0) in the direction specified by (1-4). Then
' = f(x1,y1) determines a new direction at (z1,;) (Fig. 1). Upon proceed-
ing a short distance in this new

direction, we select a new point y
(r9,2) and at this point determine
a new slope ¥’ = f(xe,)2). As this
process is continued, a curve is built
up consisting of short line segments.

If the successive points (2o,Y0), (¥, %)
(@1 y1)s @2,¥2), «.ey (Tayln) are
chosen near one another, the series
of straight-line segments approxi- |
mates a smooth curve y = () Fia. 1
which is a solution of (1-3) associ-
ated with the choice of the initial point (vy,y0). A different choice of the
initial point will, in general, give a different curve, so that the solutions of
Eq. (1-3) can be viewed as being given by a whole family of curves. Such
curves are called integral curves, and each curve in the family represents
a particular solution or an integral of our equation.

Also, we can make a surmise that, unless f(z.y) in the right-hand member
of (1-3) is a badly behaving function, for each choice of the initial point
there will be just one solution of Eq. (1-3). This surmise is capable of
proof, which we do not give here because it requires the use of analytical
tools which are not provided in the usual calculus courses. However, the
statement of essential fucts is easy to grasp, and since it will facilitate the
understanding of subsequent developments, we give it here as a basie
theorem.

ExistencE Axp UNiQueness THEOREM. The equation y' = f(x,y) has
one and only one integral curve passing through each point of the region n
which both [(x,y) and df/dy are continuous functions.'

Unless a statement to the contrary is made, we shall suppose that the
restrictions imposed on f(z,y) in this theorem are fulfilled, so that Eq.

(x40 Yq )

(-\'z.yz)

=

1Tt suffices to suppose that |af/ady| is bounded in the region. Proofs of this theorem
are contained in many books on differential equations, for example, E. L. Ince, “Ordi-
nary Differential Equations,” p. 62. See also Sec. 17 of this chapter.
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(1-3) has a unique solution for each choice of (x¢,y0) in the appropriate
region of the zy plane.

Since by changing the initial value y|,—., = y(xo) we get a family of
curves depending on the arbitrarily chosen value y(xo), the equation of
this family can be written in the form

y = olz0) (1-5)

involving one arbitrary constant ¢, corresponding to the arbitrary choices
of y(zg). A particular curve of the family (1-5) passing through (zo,y0)
is then determined by the value of ¢ such that i, = ¢(zo,c).

A solution of the first-order equation (1-3) involving one arbitrary
constant is called a general solution.' Such solutions are often written in
the implicit form

‘I’(.l',y,C) = 0) (1_6)

where it is understood that (1-6) can bhe solved for y to yield the explicit
form (1-5). In practice it may not be necessary to exhibit the explicit
form. The essential feature of the general solution [be it given by (1-5)
or (1-6)] is that the constant ¢ in it can be determined so that an integral
curve passes through a given point (2o,y0) of the region under consideration.

We illustrate this by demonstrating that throughout the zy plane the
general solution of Eq. (1-2) can be written as

y = e~ (x + ¢). (1-7)

The fact that (1-7) is, indeed, a solution is easily verified by substituting
(1-7) in (1-2). Moreover, it is a general solution, because on setting
x = xpand y = 1o we get
Yo = € (o + o). (1-8)
Thus the integral curve passing through (z0,50) corresponds to
¢ = yucrg — Zp.
As another example consider the equation
dy
dx

where f(z) is any continuous function. A general solution of this equation,
obtained by direct integration, is

y= ff(r) dx + c. (1-10)

1 Some first-order equations may have solutions which cannot be determined from
the general solution for any value of ¢. Such solutions, called singular solutions, arise
only when the conditions imposed on f(x,y) in the basic theorem are not fulfilled.
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We show next that (1-10) is a general solution of (1-9). We denote an
indefinite integral in (1-10) by F(x), so that dF/de = f(x). Then (1-10)
is the same as

y=F(@&)+e (1-11)

On setting x = xg, ¥ = Yo, We get
Yo = F(z0) + ¢,
so that ¢ = yo — F(z0),
and we can, therefore, write (1-11) as
y = F(z) — F(z0) + %o
= F(x)|% + Yo (1-12)

But from the fundamental theorem of integral calculus,
[ 1@ dz = P,
and therefore (1-12) yields the desired particular solution

y = L : S(e) dax + yo, (1-13)

corresponding to the choice of the initial point (vy,y0).

Formula (1-13) illustrates the procedure of deducing particular solutions
by integrating the given equation (1-9) between limits. It is frequently
simpler than the procedure of determining the desired solution by calculat-
ing the constant ¢ in the general solution from the initial data.

The foregoing discussion can be extended to equations of higher order.
Thus, the nth-order equation

Flog g . « ™) =0, (1-14)
which we shall write in the form solved for 3™ as
y ™ = f@yy,. "), (1-15)
has a unique solution for n arbitrarily assigned initial values,
y(@o), ¥'(x0),- - ., ¥V (x0), (1-16)

whenever the function f in (1-15) s continuous together with the partial
derivatives of/dy, of/dy’, ..., af/ay" M.

When the values in (1-16) are varied, we get a family of curves, the so-
called n-parameter family, corresponding to n independent choices of
constants in (1-16). The equation of this family of solutions can be written
in the form

y = @(x,c1,Cs,. . - ,Cn) (1-17)



