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Preface

Polymer alloys and blends belong to one of the most dynamic sectors
of the polymer industry. This explains the great interest in the studies
of their physical and mechanical properties, their structure, and the
processes of their formation and manufacture. Thermodynamics of
polymer blends is based on the classical theories of polymer solutions
developed by Flory, Huggins, Prigogine, Patterson, Sanchez, and
others as well as on the theories of the phase equilibrium and phase
separation in solids developed by Cahn, Prigogine, and other authors.
There are many books and reviews on the subject of the thermody-
namics of polymer solutions. After the fundamental works by Flory,!
Huggins,” and Tompa,® the following publications have been dedicated
mainly to the problems discussing excluded volume. Theoretical in-
vestigations regarding this subject, performed before 1970, were sys-
tematically summarized as the so-called two-parameter theory in the
book by Yamakawa* and compared with an extensive experimental
data. This first stage of research was immediately followed by a new
theoretical approach, namely, the renormalization group theory.
These developments, achieved until recently, can be found in books
by Freed® and des Cloizeaux and Jannink.® However, the recent
experimental data point out to the deficiencies in the two-parameter
theory. These data were summarized and discussed by Fujita.” There
have been published also some reviews.?° The new developments and
the fundamental contribution to the theory of polymer solution come
from de Gennes'! discussed in his famous book Scaling Concepts in
Polymer Physics.

However, if presently there exists a voluminous scientific litera-
ture dedicated to various aspects of the physics and chemistry of
polymer blends, there are no many books dedicated to the thermody-
namics of mixing and thermodynamic behavior of polymer mixtures.
This subject was presented in such fundamental works as Polymer
Blends edited by Paul,'? books by Olabisi, Robeson, and Shaw,!?
Manson and Sperling, i Utracki,!® and some other authors.'617

Thermodynamic behavior of polymer blends determines the
compatibility of the components, their morphological features,
rheological behavior, microphase structure, and in such a way the
most important physical and mechanical characteristics of blends.

This book is dedicated to the detailed analysis of the thermody-
namics of polymer- polymer systems. This book is not intended as an
introduction in the field but the knowledge of the main principles of
thermodynamics is assumed. We attempted to consider the modern
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state of thermodynamics of mixing and phase separation and to
discuss both theoretical and experimental aspects of the problem.
Chapters 1 and 2 discuss thermodynamics of polymer solutions and
the most important theories describing the processes of dissolution
and phase separation. These chapters give the reader a fundamental
understanding of the present state of knowledge on the thermodynam-
ics of polymer blends. Analyzing the thermodynamic behavior of
polymer blends, we pay a special attention to the processes of phase
separation and to the formation of an interphase between coexisting
phases. The thermodynamic properties of an interphase Play a very
important role in the mechanical behavior of the blends. 8 One may
say that formation of the interphase distinguishes the properties of
blends from properties of solution. After all, the rheological and
mechanical properties of polymer blends are determined by the com-
patibility of the components and by the degree of microphase separa-
tion that implies the formation of an interphase.

Some words about terminology. Although the concept of “com-
patibility” is widely used in the literature, we 1prefer to follow the
definition given by Olabisi, Robeson, and Shaw.!® We cite: “compati-
bility has been used by many other investigators involving various
studies of polymer-polymer blend behavior to describe good adhesion
between the constituents, average of mechanical properties, etc. The
term “miscibility” has been chosen to describe polymer-polymer blends
with behavior similar to that expected of a single-phase system. The
term miscibility . . . does not imply ideal molecular mixing but suggests
that the level of molecular mixing is adequate to yield macroscopic
properties expected of a single-phase material.”

Another term that should be defined is: polymer alloys and
blends. Both alloys and blends are produced by mixing two polymers
in various conditions. Utracki'® considers all the mixtures as blends
that may be either miscible or immiscible. Alloys are formed, after
Utracki, only after some modification of immiscible blends which
allows to improve the compatibility, i.e., alloy is the result of some
compatibilization. This compatibilization does not imply that the
system becomes miscible and is only connected with some improve-
ment of interactions at the interface between the two phases of
immiscible mixture (a typical example is compatibilization obtained
by the introduction in the homopolymer blend of diblock-copolymers
composed of blocks corresponding to two homopolymers).

We propose another terminology'®!® based on the thermody-
namic considerations and including the analysis of the phase dia-
grams of binary mixtures as the basis for differentiation.

It is known that the most common and convenient method of
mixing two polymers is by melt blending, which is typical for metallic
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alloys. Generally, alloys are macroscopically uniform substances ob-
tained by fusion of two or more metals, nonmetals, and organic
compounds. In general, alloys are not obtained by simple mechanical
mixing of the components. By fusing, the components may form
mixtures of various phases. The phase state of an alloy in equilibrium
can be determined from the phase diagram. It is known also that, for
linear polymers, the phase diagrams are of two types, with upper and
lower critical solution temperatures (UCST and LCST). Taking the
phase diagrams as a basis, we give the following definitions:

Alloys of linear polymers are binary or multicomponent
systems that, when mixed in the molten state, they are
situated in the region of the phase diagram corresponding
to the mutual miscibility of the components and to the
formation of one-phase solution. This means that the system
is thermodynamically stable (at equilibrium) in the molten
state. By cooling the melt, a structure develops which de-
pends on the thermodynamic state at a given temperature.
If by cooling, the system with UCST enters the region of
unstable states in the phase diagram (immiscibility or ther-
modynamic incompatibility arises), then the structure be-
comes the two-phase structure and it is determined by the
conditions of phase separation.

The structure depends on the degree of phase separation and
on the mechanism of phase separation (nucleation or spino-
dal decomposition). The ratio and composition of two phases
is determined by the kinetics and mechanism of phase
separation. For binary systems with UCST, the mixing of
the alloy components should be conducted in the region
above spinodal and for the systems with LCST - below
spinodal, i.e., in the range of one-phase solution. For systems
with LCST, one-phase structure is preserved by cooling, i.e.,
a miscible system is maintained.

Blends of linear polymers are such binary systems that, by
mixing in the molten state, they are not miscible and do not
form one-phase system (they are not thermodynamically
miscible). The components forming a blend may also have
UCST or LCST. For systems with UCST, the formation of
blend proceeds at temperatures below the binodal and for
systems with LCST above the binodal. The transition from
two-phase to one-phase state for systems with LCST is
practically impossible by lowering temperature because of
the high viscosity of the melt and the slowness of the mutual
dissolution process. Thus, the structures of blends are deter-

Xi



mined by the degree of dispersion of one or both components

achieved during mixing in the melt.
In such a way, depending on the temperature range of mixing, relative
to the position of the binodal or spinodal, the same polymer pair may
form both alloys and blends. The realization of both possibilities
depends on the relationship between the temperature of phase sepa-
ration for a given composition of a mixture and the glass transition
temperatures or melting points of both components. Because the
formation of blends or alloys by fusing the components (mixing in the
molten state) is always followed by temperature reduction, the defi-
nitions given above allow to distinguish between the structural fea-
tures of polymer alloys and blends. The analysis made above allows
to conclude that two-phase or multi-phase blends are typical of sys-
tems with UCST, whereas one-phase alloys for systems with LCST.

The principle feature of polymer alloy consists of the incomplete
phase separation in the system. By cooling a melt of two polymers the
thermodynamic incompatibility of two components arises which
causes the incomplete phase separation of the system. This incom-
pleteness of the phase separation causes the development of both the
microphase separation regions of various composition and transition
or interphase zone between coexisting microregions. The system with
incomplete microphase separation is not in the state of thermody-
namic equilibrium. A segregated structure develops in the bulk be-
cause of these processes with a complex of specific properties:
appearance of the regions with different density, composition and
mechanical properties, appearance of the internal interphase bounda-
ries, etc.

The same definition may be applied to the reactive mixtures
capable of the formation of interpenetrating polymer networks. The
transition from the initially one-phase mixture of components to cured
two-phase system is connected with the phase separation and the
phase-separated system may be attributed to alloy.

However, in the present book, where we consider the thermody-
namic behavior of the polymer-polymer systems and do not deal with
the peculiarities of their structure in a solid state, we will use the
words “blends” and “mixtures” as a general, equivalent, and habitual
terms. In reality, when we mix or blend two polymer components we
do not know beforehand their thermodynamic behavior.

It is worth noting that there are no either fully miscible or fully
immiscible mixtures. All depends on the phase diagram of the system,
i.e., on the composition and temperature. At the same time, we fully
agree with the statement'® that “the two-phase system must be
defined and contrasted with miscible system to delineate the two
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subjects and to establish the criteria.” One of the aims of this book is
the analysis of conditions of miscibility and immiscibility.

These authors understand that the field of thermodynamics of
polymer blends is too extensive to be covered in one book. There are
many questions that have not been considered or were considered only
briefly. However, we hope that this volume will further stimulate
interest in this branch of physical chemistry of polymers.

Authors had worked with full comprehension. Each of us thanks
the other for the mutual support and encouragement. We wish also to
express our sincere gratitude to Dr. G. Wypych who initiated this work
and who waited patiently for its result.

Institute of Macromolecular Chemistry,
National Academy of Sciences of Ukraine,
Kiev, June 1997
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Chapter 1

BASIC PRINCIPLES OF THERMODYNAMICS OF
POLYMER SOLUTIONS

1.1 THE MAIN THERMODYNAMIC
CHARACTERISTICS OF SOLUTION

The main thermodynamic functions of any solution are the changes
in enthalpy of its formation, AH, entropy changes, AS, and Gibbs free
energy, AG = AH — TAS. At constant temperature and pressure, the
dissolution is a spontaneous process proceeding in the direction of
diminishing Gibbs free energy of mixing. The solution has lower free
energy as compared with the sum of free energies of solution compo-
nents (polymer and solvent):

Gsolution < z niG? [11]

where G° is the free energy of i-th component.
The excess free energy determined as

AG = Giolution — Z an? [1.2]

by spontaneous dissolution is negative. Correspondingly, the chemical
potential of a component in solution, p;, should be lower than its value
before dissolution, p; < p! i.e., Ap; < 0. Values AG < 0, Ap; < 0 are the
criteria of the affinity between components. Their values are deter-
mined by the absolute magnitude of the differences AG or Au;.

The solution in which all molecules of components equally inter-
act with each other are considered as ideal solutions. Their properties
are the additive sum of the properties of components. Such solutions
obey the Henry and Raul laws:

pz = Kx [1.3]
p1=pi1 - x) [1.4]

where p; and p; are partial pressure of components, x is the molar
fraction of component in solution. Because



2 Basic Principles of Thermodynamics of Polymer Solutions

wi = RT In pi/p! [1.5]
we find that
Api=RT In x; [1.6]

It means that the chemical potential of any component is only deter-
mined by its molar fraction in solution. In the majority of cases,
solutions do not obey Egs 1.3 to 1.6. They are thus considered non-
1dea1 The deviations from the ideality (p; /p? = x;) may be positive
(p;i/p? > x;) or negative (p;/ p? <x;). To estimate the degree of deviation
from the ideality, the concept of excess quantities is introduced as an
excess of properties in comparison with the ideal magnitude. These
are:

ApS™ = Ap; - A =RT In y; [1.7]
- o 51
ASP* =5, -S4=_RTInvy; - RT[ Y’%Y‘J [1.8]
P
Slny
AHS = RTz[ SI%YJ [1.9]
P
AGP*=RInvy; [1.10]

where 7; is the activity coefficient of component i in a real solution
(yi=ai/ x;). If the activity is expressed as RT Ina; = p; — p., , then we have:

AG* = Z XA =RT Z x; Iny; [1.11]
— In v:
AH® = D xAHP™ = -RT? 2. Xi[—s ;,;Yl] [1.12]
P
§ Tn 5
ASTC = D % ASP* = _RD x; In ; - RTZX{ 5’,},*} [1.13]
1.2 REGULAR SOLUTIONS.

HILDEBRAND-SCATCHARD EQUATION

According to Hildebrand, a solution is called regular if by its formation
AH # 0. It is accepted that the distribution of mixed molecules is fully
random, i.e., the entropy of mixing equals to the ideal value, whei as
mixing proceeds without changing volume. The energy of mixing of
pure liquid components, AE;,, equals to the difference between inter-
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molecular energy of one mole of solution, Eg;, and the sum of inter-
molecular energies of pure liquid components, E;:

0

2 9 1 5
AEix = 27N Vi (—Is rdr——js 1pnnridr—
mix ovVP102 V1V20 12 P12 V%o 1

= lz .[822 P22 rzdr) [1.14]
Vz

where V is the volume of one mole of solution, g3, €29, and &1 are the
interaction energies of two molecules in a pair, p;j, p22, and p;g are
the probabilities that any arbitrary chosen molecule in the volume
unit is the molecule of the 1, 2, etc. kind, r is the distance from the
arbitrary chosen central molecule, ¢, and ¢, are volume fractions of
components that are constant in a solution: ¢; = V(1 - x)/[V(1 - x) +
Vox]; @2 = Vox/[V1(1 - %) + V; x]. Using expression for g as —kij/rs,
where k;; is the interaction constant for molecules of the type i and j,
and the rule of the geometric average ki = (kq; kog)'’?, one can obtain
Eq 1.14 in the form:

AEnix = Vo102[(ES/ V)2 - (E3/V,) V%2 [1.15]

This is the Hildebrand-Scatchard equation for the regular solutions.
The ratio Ei/V; is called the density of cohesion energy. The value
8 = Ei/V)Y? was called by Hildebrand the coefficient or solubility
parameter of the component. The difference of magnitudes in the
square brackets (Eq 1.15) determines a deviation of the solution from
the ideal behavior. The shortcoming of the theory of regular solution
consists of the assumption that the behavior of molecules in solution
does not depend on the heat effect of mixing, or that the entropy of
mixing is ideal, AH # 0. This theory is only applicable to solutions
containing weakly polar or non-polar components, having the molecu-
lar field of spherical symmetry and mixing with a low change in
volume.

The non-uniform distribution of molecules is the basis of the
theory of strictly regular solutions. The theory uses the lattice model,
based on the following assumptions:

® the solution structure is considered quasi-crystalline (short

range order) and the particles of the solute and solvent have
one and the same coordination number, z

® only the interaction between neighboring molecules is con-

sidered



4 Basic Principles of Thermodynamics of Polymer Solutions

e the potential energy of the system is divided into configura-
tional energy (the energy of the disposition of all the mole-
cules into the lattice site) and acoustic energy (the vibration
energy near the equilibrium center). The vibration energy of
the molecule does not depend whether the molecule is in
solution or in a pure liquid.

e each molecule occupies one lattice cell (therefore molecules
should have the same shape and volume).

The potential energy of the molecular exchange of various lig-

uids is taken as:

Ell +E22 —2E12=—2AW12 [116]

where wj; is the interaction energy of two molecules. Due to exchange,
the number of bonds, z, of the type 1-1 with energy E;; and z bonds of
the type 2-2 with energy Eg; are destroyed and 2z bonds of the type
1-2 are formed with energy E,. If the exchange energy is zero, the
system is athermic, whereas, for the non-zero energy, the system is
called non-athermic. The zero approximation of the theory of regular
solution gives the relationship:

SA
AH = No(1 - x)x | Awg — Tomo12 [1.17)
8T
and
AG = Nox(1 - )Awyg [1.18]

1.3 PHASE EQUILIBRIUM IN SOLUTIONS.
BINODALS AND SPINODALS

A system of unperturbed equilibrium consists of only one phase. Any
perturbation leads to the appearance of some amount of a new phase.
The intensive properties of this new phase (partial molar volume,
composition, etc.) may differ from the properties of the equilibrium
system either by infinitely small or finite value. Various situations
may arise:!

e the initial phase is stable in the relation to all other phases,
independently on the difference in properties is infinitely
small, or it has a finite value

¢ theinitial phase is stable in relation to all phases that differ
infinitely small from it, but there is at least one phase in the
system in relation to which the initial phase is not stable

® the initial phase is not stable in relation to the phases with
infinitely small difference.



