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PREFACE

This volume contains the papers presented at the Symposium on Partially

. Ordered Sets and Lattice Theory held in conjunction with the Monterey

meeting of the American Mathematical Society in April 1959. The

Symposium was sponsored by the American Mathematical Society and

supported by a grant from the National Science Foundation.- The interest
and support of these organizations is gratefully acknowledged.

Some twenty-one years earlier, on April 15, 1938, the first general
symposium on lattice theory was held in Charlottesville in conjunction with
a regular meeting of the American Mathematical Society. The three
principal addresses on that occasion were entitled: Lattices and their
Applications, On the Application of Structure Theory to Groups, and The
Representation of Boolean Algebras. It is interesting to observe that the
first and last of these titles appear again as section titles for the present
Symposium. Furthermore the second title is still of current interest as
evidenced by the paper of Marshall Hall. Nevertheless there have been
major changes in emphasis and interest during the intervening years and
thus some general comments concerning the present state of the subject and
its relationship to other areas of mathematics appear to be appropriate.

The theory of groups provided much of the motivation and many of the
technical ideas in the early development of lattice theory. Indeed it was
the hope of many of the early researchers that lattice-theoretic methods
would lead to-the solution of some of the important problems in group
theory. Two decades later, it seems to be a fair judgment that, while this
hope has not been realized, lattice theory has provided a useful framework
for the formulation of certain topics in the theory of groups (for exampl,
generalizations of the Jordan-Holder theorem) and has produced some
interesting and difficult group-theoretic problems (cf. the excellent mono-
graph of M. Suzuki). On the other hand, the fundamental problems of
lattice theory have, for the most part, not come from this source but have
arisen from attempts to answer intrinsically natural questions concerning
lattices and partially ordered sets; namely, questions concerning the de-
‘compositions, representations, imbedding, and free structure, of such
systems. It should be pointed out that group theory and other areas of
mathematics have furnished concepts and methods which have proved to be
useful in the study of these questions. Thus the techniques associated with
the study of composition series and chief series in group have been successfully
applied to the structure of modular and semi-modular lattices. Set topology
and ring theory have been the source of many fruitful ideas in the study of
Boolean algebras. Also the theory of linear vector spaces and projective
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viii PREFACE

geometries have contributed some of the basic methods for the development
of the theory of complemented modular lattices and, in particular, continuous
geometries. Nevertheless, as the study of these basic questions has pro-
gressed, there has come into being a sizable body of technical ideas and
methods which are peculiarly lattice-theoretic in nature. These conceptual
tools are intimately related to the underlying order relation and are
particularly appropriate for the study of general lattice structure.

At the 1938 Symposium, lattice theory was described as a ‘“‘vigorous and
promising younger brother of group theory”. In the intervening years it
has developed into a full-fledged member of the algebraic family with an
extensive body of knowledge and a collection of exciting problems all of its
own. Such outstanding problems as the construction of a set of structure
invariants for certain classes of Boolean algebras, the characterization of
the lattice of congruence relations of a lattice, the imbedding of finite
lattices in finite partitions lattices, the word problem for free modular lattices,
and the construction of a dimension theory for continuous, non-comple-
mented, modular lattices, have an intrinsic interest independent of the
problems associated with other algebraic systems. Furthermore, these and
other current problems are sufficiently difficult that imaginative and
ingenious methods will be required in their solutions. A vigorous group of
mathematicians are attacking these problems and the results of some recent
progress may be found in the papers included in this volume.

R. P. DILwoRTH
CALIFORNIA INSTITUTE OF TECHNOLOGY
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STRUCTURE AND DECOMPOSITION THEORY OF LATTICES
BY
R. P. DILWORTH

1. Introduction. One of the most natural problems which arise in the
investigation of an abstract algebraic system is that of representing the
elements of the system in terms of a canonical subset by means of the opera-
tions of the system. Thus for a polynomial domain over a field with the
operation that of ordinary polynomial multiplication it is the problem of
representing polynomials as products of irreducible polynomials. For
lattices there are two operations with respect to which we may consider the
representation of the elements of the lattice. Since the operations are dual
it suffices to consider representations with respect to one of the operations.
Thus we shall treat only meet representations. Now an element which
cannot be expressed as the meet of elements distinct from itself clearly has
only trivial representations. Furthermore these elements must surely be
included in any reasonable canonical set. Thus we shall be particularly con-
cerned with meet representations in terms of meet irreducible elements.

A second natural problem which arises in any algebraic investigation is
that of representing the system as a whole in terms of certain distinguished
subsystems by means of canonical constructions. The most familiar of these
constructions is the direct union (direct product) representation. Again, if
possible, it is desirable to represent the system as a direct or subdirect union
of systems which cannot be further decomposed, i.e.;indecomposable systems.

For most algebraic systems, these two problems are quite different in
character and the results in one case may have very little connection with the
results in the other. For lattices, on the other hand, these two problems are
intimately related. For direct and subdirect union representations of
lattices, or indeed of any algebraic system, can be described in terms of the
structure of the congruence relations on the algebraic system. But the con-
gruence relations in a very natural way form a lattice. Furthermore, the
meet representations of the null congruence relation correspond to the sub-
direct representations of the algebraic system. Hence decomposition
theorems for the elements of a class of lattices will immediately give represen-
tation theorems for those algebraic systems having congruence lattices
belonging to the given class of lattices. In particular, decomposition theo-
rems which hold for the null element of the lattice of congruence relations of
a lattice lead to subdirect (or direct) union representation theorems for the
lattice itself. Structure theorems for lattices are greatly simplified by the
fact that the lattice of congruence relations on a lattice is always distribu-
tive. Thus it suffices to study the decomposition theory of distributive .

3



4 " R. P. DILWORTH

lattices in developing the structure theory of arbitrary lattices. However,
applications to the structure of other algebraic systems require a decom-
position theory for lattices of a much more general type. This paper will be
devoted to a description of the relationship between structure and decom-
position theorems followed by an account of the development of decomposition
theory up to present. The final section contains a discussion of some of the
outstanding problems of current interest in this area of lattice theory.

2. Direct and subdirect unions. Consider a collection of lattices L, where
o« belongs to an index set 4. [.L. will denote the ““Cartesian product” of
the lattices L, ; that is the set of functions f on 4 such that f(«) € L, for each
acA. TJ«Leis a lattice if we define

T(fUge) = fle) Y g(a),
(f N g)a) = f(e) N g(e).

A lattice L is “imbedded” in [].L, if L is isomorphic to a sublattice of
[TeLe. L is a subdirect union of the lattices L, if L is imbedded in [ [.L. and
for each a, € L, there exists a function f € [ [.L, corresponding to an element
of L such that f(¢) = a.. Finally L is a direct union of the lattices L, if L
is imbedded in [J.L. and for every finite set of indices a3, - - - ,as and elements
Qagy* * *> By, I Loy -+, L, respectively, there exists f corresponding to an
element of L such that f(e) = @a, ¢ = 1,-- -, n.

If L is imbedded in [].L., this imbedding induces a natural set of con-
gruence relations on L ; namely

a 0, b if and only if a, = b..

For the study of lattice structure it is useful to have a characterization of
imbedding, subdirect unions, and direct unions in terms of properties of this
set of congruence relations. We begin by pointing out that the set ®(L) of
congruence relations on L can be partially ordered by the relation

0 < difandonlyifabb=adb.

®(L) has a unique maximal element ¢, namely the congruence relation which
identifies all elements of L. ©(L) likewise has a unique minimal element w,
namely the equality relation on L. Under the above partial ordering ®(L) is
a complete lattice. If ® = ©(L) then the meet and join of the subset ® may
be characterized as follows :

a N b if and only if a ¢ b for all ¢ € @5

a Y@ b if and only if @ = ao, a1, - -, am = b exist such that a;—1 ¢ a; for
(ﬁ‘ e D. :

In addition to the lattice operations, a permufa.bility relation plays an
important role in structure theorems. Congruence relations 6 and ¢ are said
to permute if a 6 b and b ¢ ¢ imply the existence of d such that a ¢ d and d 6 c.
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Permutability is preserved by the lattice operations., If § permutes with
both ¢ and ¢, then 6 permutes with ¢ U ¢ and ¢ N ¢. Furthermore if 6
permutes with all of the congruence relations belonging to ®, then 6 per-
mutes with [ J®. Itisnot difficult to show that any two congruence relations
on a relatively complemented lattice permute. Another useful result asserts
that any lattice of permuting congruence relations on an arbitrary algebraic
system is modular. For lattices there is the stronger theorem of Funayama
[9] that ©(L) is always distributive.

Now if 6 is a congruence relation on L, the congruence classes form a lattice
which is a homomorphic image of L. The lattice of congruence classes will
be denoted by 6(L). If L is imbedded in Jela and 6, is the congruence
relation determined by the component L,, then each congruence class of 0.
determines a unique a; € L, and 0.(L) is thus a sublattice of L. Further-
more if a 0, b for all « € A, then a, = b, all « € A and hence a = b. Thus
Nebo = w. If L is a subdirect union of the lattices L,, then 0,(L) = L.
Thus subdirect union representations are characterized by meet decom-
positions of the minimal congruence relation. Clearly subdirect union
representations in terms of subdirectly irreducible lattices correspond to
decompositions of w into indecomposable congruence relations.

We next observe that if L is a direct union of the lattices L, and «, § are two
distinet elements of A, then for any pair of elements a, b € L, there exists
¢ e L such that ¢, = a, and ¢g = bp. Thus a 6, ¢ and ¢ 6 b. It follows that
9. and 0 permute and 6, U 65 = . Hence direct union representations of L
correspond to decompositions w = (0. where {0a|a € A} is a set of per-
muting, coprime congruence relations. Conversely, any such decomposition
of w leads to a direct union representation of L. ;

Finally, it should be mentioned that Hashimoto [10] has characterized
Cartesian product representations in terms of properties of ®(L) and a
generalized notion of permutability. If {6:|x € A} is a set of congruence
relations, let 6* = (){0s|8 # o}. The set {f,|a € A} is said to be completely
coprime if 6, U % = ¢ for all «. Likewise the set {6s|x € A} is said to be
completely permutable if a.(f5 U #%)as for all « and B, implies that there exists
a € L such that af.a, forall c e A. Then if {f.|« € 4} is a set of completely
coprime and completely permutable congruence relations, L is isomorphic
to [Taa(L). It is also easy to see that the congruence relations on a Cartesian
product determined by the component lattices form a set of completely
coprime and completely permutable congruence relations.

3. The classical decomposition theorems. As mentioned in the introduc-
tion and in view of the applications to structure problems we shall be inter-
ested in the representation of elements of a lattice as meets of indecomposable
elements. However, the appropriate definition of indecomposability will
depend upon the type of representations under. consideration. The two
principal definitions are the following.
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DerFinrTION 3.1. ¢ is (meet) irreducible if ¢ = x Ny implies ¢ = z or
7=9.

DEFINITION 3.2. q is completely (meet) irreducible if g = (S implies ¢ = s
for some s € S.

In general, the first definition is appropriate for finite decompositions while
the second is the appropriate concept for infinite decompositions.

The fundamental problems in decomposition theory concern the question
of existence and uniqueness of decompositions into irreducibles. If an
element of a lattice can be represented as a meet of the set Q of indecom-
posables and if the removal of one or more elements from the set Q gives a set
with the same meet, then the representation @ = (@ can hardly be unique
in any reasonable sense. Hence we shall restrict our attention to irredun-
dant decompcsitions.

Derinrrion 3.3. A decomposition a = (Q is irredundant if ()(Q — q) > a
for all g € Q.

Ifa = g1 N---N gnis a finite decomposition of a, then by deleting super-
fluous ¢’s this decomposition can always be refined to an irredundant decom-
position. For infinite decompositions, this process breaks down, and hence
the construction of irredundant infinite decompositions requires a more
elaborate procedure.

The classical existence theorem is the following.

THEOREM 3.1. If L satisfies the ascending chain condition, then every
element of L has a finite irredundant decomposition into irreducibles.

For if the theorem is not true, the lattice L contains a maximal element a
which cannot be represented as an irredundant meet of irreducibles. a is
reducible since otherwise it would have an irredundant decomposition con-
sisting of one irreducible. Hence ¢ = 2 Ny where z > a and ¥y > a. But
then both z and y may be represented as meets of irreducibles and hence a
can likewise be so represented. Refining this decomposition into an irredun-
dant one contradicts the definition of a.

The classical uniqueness theorem is due to Birkhoff [2] and concerns distri-
butive lattices.

THEOREM 3.2. If an element of a distributive lattice has a finite irredundant
decomposition into irreducibles, this decomposition is unique.

Forifa =qiN---Ngm = gy N---N g, are two irredundant decompositions
into irreducibles, then ¢ =g Ua=qU (@ N---Ng)) =(qUg)N---
N (g1 Y ¢,) and hence ¢; = ¢; U ¢ for some j. Thus ¢; > ¢; and similarly
g; 2 qx for some k. Since the decompositions are irredundant 7 = k and
hence g = ¢;. Similerly each g} is equal to gx for some k and hence the
two decompositions are identical.
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Another type of uniqueness theorem is concerned with the replacement of
irreducibles in one decomposition by suitably chosen irreducibles in another
decomposition. The elassical theorem of this type is due to Kurosch [11]
and Ore [12].

THEOREM 3.3. Leta = g1 N -Ngm = gy N---N g, be two trredundant
decompositions of an element of a modular lattice.. Then for each q; there exists
a q; such that a = qi N---N gi—1,N g O\ GigyyN - -2 O gm 18 an irredundant
decomposition of a.

Forif ¢* = q1 NN gi—1 N gis1 N+ - N gm, then it can be easily verified
that [¢; U (¥ N 2)]N [V (¢FNy)] = ¢V (gFNnany). Repeated appli-
cation of this formula gives [¢; VU (¢¥Ng)IN-- N[V (TN q)] =
GU(@ENngiNn---Ng)=quU(gfna) =q¢gVa=gq;. Since ¢; is irre-
ducible we have ¢; = ¢; U (¢¥ N ¢}) for some j and hence ¢; = ¢F N gq; for
some j. But then ¢ = ¢;Ng¥ 2 ¢fN ¢ 2 a and hence a = gfNgj. It
is easy to see that this representation is irredundant.

The property expressed in this theorem we shall call the replacement
property for irredundant decompositions in modular lattices. Repeated
application of the replacement property shows that m = » and hence that
the number of irreducibles in the irredundant decompositions of an element
of a modular lattice is unique.

We note at this point that Theorem 3.3 can be sharpened to give a-simul-
taneous replacement theorem. Namely, the ¢} may be remembered so that
each g; can be replaced by g;.

The methods of proof for the classical uniqueness and replacement theorems
do not extend to more general lattices. Thus a new technique is required.
We will begin by discussing the finite dimensional case.

4. Finite dimensional lattices. Let L be a finite dimensional lattice and let
a = q1 N---N gy be an irredundant decomposition into irreducibles. Then
¢ =qiN---Ngi1 0 qiy1 N+ -N gm # a for each ¢ and hence there exists
pi such that ¢¥ > p; > a when p; > a signifies that p; covers a. Thus irre-
dundant decompositions are closely related to properties of the elements
. covering a. Let ugs denote the join of all elements p covering a. Then
ug Nz = aifand onlyifx = a. Hencea = g1 N---N gn is an irredundant
decomposition of a if and only if @ = (ug N q1) N- - - N (ug N gm) is an irre-
dundant decomposition of a in the quotient lattice us/a. Thus the study of
the irredundant decompositions of a is reduced to the study of the irredundant
decompositions @ = 81 N---N 8y In ug/a where s; = qi N u, for some
irreducible ¢; of L. Now the maximal elements of us/a always have this
form. For if u, > s, let ¢ be a maximal element in L such that ¢ = s,
q % uq. Then ¢ is irreducible and ¢ N %, = s since 4, > s. In most cases
of interest, the maximal elements of u,/a are the only elements of u,/a having
this form and hence the study of the irredundant decomposition of a is
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reduced to the study of the irredundant representations of a as a meet of
maximal elements of ug/a.

Now if the elements of a lattice L have unique irredundant decompositions
into irreducibles, the lattice must be semimodular. For if a > a N b while
a U b > ¢ > bthere exists an irreducible ¢; such that ¢; = ¢,¢1 2 a U band
an irreducible g2 such that g2 = b,92 2 ¢. Henceanbd =anNg; = a N qs.
If we take any finite decomposition of a (which exists by Theorem 3.1) this
leads to two decompositions of @ N b which may then be refined to irredun-
dant decompositions. Since q; = ¢ and ¢z % ¢, it follows that these two
irredundant decompositions are distinct contrary to assumption.

‘Thus in characterizing finite dimensional lattices with unique irredundant

‘representations we may restrict our attention to semimodular lattices. But
in a semimodular lattice every maximal independent set of points of us/a
has the same number of elements, such a set of points generate a Boolean
algebra, and the maximal elements of the Boolean algebra are elements
covered by ug in us/a. Hence there exist irredundant decompositions having
the same number of components as the number -of elements in a maximal
independent set of points of us/a. Now if ¢ is an irreducible of L such that
g % g, let p1,- - -, px be a maximal independent set of points of ¢ N us/a.
Extend this set to a maximal set p;,- - -, px,- - -, pa of points of us/a. If
Si=piU- U Pi—1UPs+1 U - - U Py, then u, > s; and hence there exists g;such
that ¢; N ug = s;. Then it is easily verified that a = g g1 N---N gy is an
irredundant decomposition of a. Hence if the number of components is
unique it follows that k¥ + 1 = n and hence s > ¢ N %g. Thus the number
of components in the irredundant aecompositions of @ will be unique only if
the number of components in the irredundant representations of a as meets
of elements covering %, is unique. But it can be shown that the number of
components in such decompositions is unique if and only if us/a is modular.
Furthermore, if u,/a is modular it follows from the classical replacement
theorem (Theorem 3.3) applied to us/a that the replacement property holds
for the irredundant decompositions of @. Finally if the irredundant decom-
position of a is unique, then us/a consists precisely of the elements generated
by a maximal independent set of points of us/a and hence is a Boolean
algebra. Thus we get the following theorems.

THEOREM 4.1. Let L be a finite dimensional lattice. Then the elements of L
have unique irredundant decompositions into irreducibles if and only if L is
semimodular and ug/a is distributive for each a.

THEOREM 4.2. Let L be a finite dimensional semimodular lattice. Then
the number of components in the irredundant decompositions of the elements of L
s unique if and only if ua/a is modular for each a in L.

In this case the replacement property holds for the irredundant decompositions
of an element of L. )

It should be observed that the semimodularity of the lattice L is equivalent



STRUCTURE AND DECOMPOSITION THEORY 9

to the semimodularity of us/a for each a € L. For if u,/a is semimodular for
each a € L, then it clearly follows that a,b > a N bimpliesa U b > a,b. Thus
L is weakly semimodular. But it is well known that for finite dimensional
lattices weak semimodularity implies semimodularity. Since distributivity
implies semimodularity it follows that L is semimodular if ua/a is distributive
for each a € L. '

We shall say that a lattice L has a property P locally if ug/a has the
property P for each a € L. Hence L is locally distributive if ug/a is distri-
butive for each a € L and locally modular if ug/a is modular for each a e L.
Then the results given in Theorems 4.1 and 4.2 may be stated as follows :

A finite dimensional lattice has unique irredundant decomposition if and only
if it 18 locally distributive.

A finite dimensional semimodular lattice has replaceable irredundant decom-
positions if and only if it is locally modular.

Finally we note that for semimodular lattices, local distributivity is equi-
valent to the property that every modular sublattice is distributive.

5. Lattices satisfying the ascending chain condition. In relaxing the
requirement of finite dimensionality it is most natural to drop the descending
chain condition, since by Theorem 3.1 the ascending chain condition alone is
sufficient to insure the existence of finite irredundant decompositions into
irreducibles. On the other hand, the techniques of §3 for studying irredun-
dant decompositions can no longer be applied since in general covering ele-
ments will not exist. However, there is a lattice closely associated with the
lattice L in which covering elements always exist ; namely, the lattice of dual
ideals. A subset 4 of L is a dual ideal if

(1) aedandz 2 aimplyze 4;

(2) abeAdimplyanbeA.

The set of dual ideals of L form a complete lattice in which the join of any
set of dual ideals is their set intersection while the meet of any set of dual
ideals is the dual ideal generated by their set union. A dualideal 4 is princi-
pal if there exist a € L such that 4 = {x € L|x 2 a}in which case we write
A = (a). The principal dual ideals form a sublattice of the lattice of all
dual ideals which is isomorphic to the lattice L. The covering theorem
asserts that if A > (a), there ewists a dual ideal P such that A > P > (a).
Finally we note that when the descending chain condition holds, every dual
ideal is principal and hence P = (p) where p > a in L.

It is now clear that in case the descending chain condition does not hold,
then in place of the quotient lattice us/a of L it is appropriate to consider
the quotient lattice Uq/(a) of the lattice of dual ideals of L where U, =
U{P|P > (a)}. In the finite dimensional case Ua/a is always finite dimen- -
sional and this property is fundamental in developing the decomposition
theory. For lattices satisfying the ascending chain condition, U, /(@) need not
be finite dimensional and this fact is responsible for some of the essential
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difficulties associated with this more general decomposition theory. How-
ever we shall see that U,/(a) will indeed be finite dimensional in those cases
which are relevant to the treatment of uniqueness and replaceability criteria.
The next step in developing the decomposition theory for lattices satisfying
only the ascending chain condition is that of formulating an appropriate
definition of semimodularity. Perhaps the most natural definition would
be to require that the lattice of dual ideals of L be semimodular. However,
this requirement is too severe since there exist lattices satisfying the ascend-
ing chain condition and having unique irredundant decompositions but for
which the lattice of dual ideals is not semimodular. Now it is easy to see that
semimodularity for finite dimensional lattices can be put in the form :

p>a,b=a bz pimplypuUbd >b.

We shall call an element a of a lattice semimodular if it satisfies the above
implication for all p and b. A finite dimensional lattice is thus semimodular
if and only if each of its elements is semimodular.

A lattice satisfying the ascending chain condition is then defined to be
(upper) semimodular if for each a € L, (a) is semimodular in the lattice of
dual ideals of L.~ °

The principal lemmas related to the finite dimensionality of U,/(a) are the
following.

LeEmMA 5.1.  Let vasatisfy the ascending chain condition. If each element
of L has a unique trredundant decomposition into irreducibles, then L 18 sems-
modular and Ug/(a) 18 finite dimensional.

Lemma 5.2. If Ug/(a) is a Boolean algebra, then it is finite dimensional.

Lemma 5.3. Let L be a semimodular lattice satisfying the ascending chain
condition. Then if the number of components in the irredundant decom-
positions of a is unique, Usa/(a) is finite dimensional.

LemMMA 5.4. Let L be a semimodular lattice satisfying the ascending chain
condition. Then if Ua/(a) 1s modular for each a, Us/(a) i finite dimensional
for each a € L.

By means of these lemmas, the techniques described in §4 can be applied
to arbitrary lattices satisfying the ascending chain condition to give charac-
terizations of lattices with unique decompositions and replaceable decom-
. positions. Analogous to the finite dimensional case let us define L to be
locally modular (distributive) if for each a € L U,/(a) is modular (distri-
butive). The statement of the fundamental theorems then differ only
slightly from those described in §4.

A lattice saiisfying the ascending chain condition has unique irredundant
decompositions if and only if it is semimodular and locally distributive.

A semimodular lattice satisfying the ascending chain condition has replaceable
srredundant decompositions if and only if it is locally modular.
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6. Compactly generated atomic lattices. In the preceding sections it has
been assumed that the lattices under consideration satisfy the ascending
chain condition. This means that the decomposition theorems can only be
applied to give structure theorems in case the lattice of congruence relations
satisfies the ascending chain condition. This is a very restrictive condition
for most algebraic systems and hence it is desirable to have decomposition
theorems which do not depend upon assumption of a chain condition. On

 the other hand, it is easy to give examples of lattices having no irreducible
elements. For such lattices a decomposition theory is essentially meaning-
less. Hence some type of restriction is necessary to insure the existence of
irreducibles and decompositions into irreducibles. Lattices of congruence
relations provide the key to such a restriction in that they always have the
property that they are compactly generated. Namely, if § € (L), then
0 = U{b(a,b)|a 6 b} where 6(a,b) denotes the congruence relation generated
by identifying @ and 5. Now suppose that | J® = 6(a,b) for some set ® of
congruence relations ¢. Then since a 8(a,b) b we have a | J® b and hence
there exist elements a = o, z1,---,2n = b such that z;; ¢;2; where
p1€®. But then a(d1U---Uda)b and hence ¢1U---U ¢s = 0(ab).
Thus 6(a,b) has the property that | J® = 6(a,b) implies | J®' = 6(a,b) where
@’ is a finite subset of ®. An element of a lattice having this property is said
to be compact. If every element of the lattice is a join of compact elements,
the lattice is said to be compactly generated. The above argument shows that
O(L) is always compactly generated and a similar line of reasoning shows that
the lattice of congruence relations on an arbitrary algebraic system iz com-
pactly generated.

The property of being compactly generated can be viewed as a generali-
zation of the ascending chain condition. For if the ascending chain con-
dition holds, then the join of an arbitrary set of elements is equal to the join
of some finite subset and hence every element of the lattice is compact. Thus
the lattice is trivially compactly generated.

At the present time a satisfactory decomposition theory for arbitrary
compactly generated lattices does not exist, although in the following section
we shall give some indications of the nature of such a general theory. The
principal difficulty lies in the fact that irredundant decompositions into irre-
ducibles need not exist. For lattices satisfying the ascending chain condition
there exist finite decompositions into irreducibles and hence by refinement
there exist irredundant decompositions. Now an element of a compactly
generated lattice can always be represented as a meet of irreducibles. For
ifa > b, there exists a compact element ¢ such that a > cand b % ¢. Since
¢ is compact there exists a maximal element ¢ such that ¢ = b and ¢ % c.
Then g is completely meet irreducible since if ¢ = ()X wherex > gforallze X
we must have z 2 ¢ for all z € X and hence ¢ = ()X = ¢ contrary to ¢ % c.
Thus ¢ 2 b and ¢ % ¢. It follows that each element is the meet of the
completely meet irreducibles containing it. This representation is in general



