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Preface

This monograph is devoted to the applications of the homotopy method to
the investigation of variational problems. The authors have attempted not
only to describe applications of the homotopy method to the analysis of gen-
eral variational problems, but also to include applications to specific problems
of analysis, the calculus of variations, mathematical physics, nonlinear pro-
gramming, etc.

The main constructions of this monograph are based on the following ob-
servation: if, when a variational problem is deformed, a critical point remains
isolated, and, for some value of the parameter describing the deformation,
this critical point is a minimizer, then the critical point is a minimizer for
the variational problem for all values of the parameter.

The book consists of an introduction and five chapters.

The first chapter is of an introductory character. It contains information
from topology, classical functional analysis, convex and nonsmooth analysis,
the theory of differential equations, and the theory of extremal problems.

The second and third chapters are devoted to applications of the homo-
topy method to the investigation of variational problems. Finite-dimensional
problems are studied in the second chapter and infinite-dimensional problems
in the third chapter.

Chapter 4 is an exposition of the theory of Conley index. The main results
of this chapter are theorems on the homotopy invariance of Conley index.

The final chapter contains a wide variety of applications of the homotopy
method. There are applications to problems of classical analysis (proofs of
various inequalities, and generalizations and improvements, determination
of exact constants, proof of a criterion for quadratic forms to be positive
definite), to nonlinear programming problems, to multicriteria problems, to
problems of variational calculus and optimal control, to stability theory and
to bifurcation theory.

The treatment in the monograph is self-contained. All prerequisite results
and definitions of a general character are either given in the first chapter or
described when needed. The book is intended to be accessible to beginning
graduate students.

The authors are grateful to the scientific editor Academician E.F. Mi-
shchenko for very fruitful discussions and recommendations, to the refer-
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ees Yu.S. Popkov and E.S. Pyatnitskii for their very helpful suggestions, to
V.I. Skalyga for his help in preparing the monograph and to L.A. Selivanova
for her highly professional work in designing the book.

The authors are grateful to the editors of de Gruyter, in particular to Dr
R. Plato, Prof. J.S. Wilson and Mrs. N. Wilson, for the help in preparing the
English translation of the book.

Moscow, June 2007 A.V. Bulatov
S.V. Emelyanov
S.K. Korovin
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Introduction

The homotopy method (or continuation method), which dates back to the
nineteenth century, plays an active part today in various branches of mathe-
matics. The general idea is geometrically visual and simple: if we are given an
equation (algebraic, differential, integral, integro-differential, operator, etc.)
and we want information about its solutions (existence, their local properties,
construction of approximate solutions, etc.), then we include this equation in
a specially constructed one-parameter family of equations which constitute
a homotopy (or deformation) from the equation to some equation which has
a known solution, and we “deform this solution with respect to the para-
meter” to obtain a solution of the original equation. Here is a more formal
explanation of this idea.
Suppose that we are given an equation

A(z) =0. (1)
Assume that we can include Eq. (1) in a one-parameter family
A(z; ) =0 (0< A< (2)

in such a way that Eq. (2) has a solution z(\) which depends smoothly on A.
Suppose that the equation

A(z;0) =0
has a solution zg and that
A(z;1) = A(x) .
Differentiating the identity
A(x(A\);A) =0
with respect to A\, we obtain
A, ) 2 A @0 = 0.

Thus z()) is a solution of the Cauchy problem
d
A N+ A (@ N) =0,
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If this solution can be extended to the interval [0,1], then z(1) is a solution
of Eq. (1).

We shall now describe another way to investigate Eq. (2) which is of a
discrete character.

We divide the interval [0, 1] into subintervals by choosing points

O= X< <<\, =1.

Let
6= Aig1 — Ai) -
oglzI'lganXA( i+1 /\z)
If § is sufficiently small, then it is reasonable to expect that zq is close to a
solution z(A;) of the equation

A(.Z‘;)\l) =0.

Taking this as an initial approximation for an iterative procedure (say, New-
ton’s method), we can find, with sufficient accuracy, an approximation of x;
to z(A1). We may regard the point z1, in turn, as an initial condition imposed
for the approximate construction of a solution x(A3) of the equation

A(II?; )\2) =0 y

and so on. At the last step we obtain, with the required degree of accuracy,
a solution z(1) of Eq. (1).

Of course these procedures have to be justified. Thus, for instance, we
need existence theorems for solutions of Eq. (2) for all A. The assumption
that the solution z(\) depends smoothly on A is rather restrictive since in
specific problems the set of solutions of Eq. (2) may turn out to be very
complicated. Moreover it is not a priori clear how to obtain the one-parameter
family of Eqgs. (2), although in practice the parameter often A enters into the
equation under study in a natural way. It should be pointed out here that the
commonest way to construct a one-parameter family of Egs. (2) is to take
equations of the form

AM(z)+ (1 —=N)B(z) =0,
where the standard equation
B(z) =0

is constructed using a priori information about the equation Eq. (1) under
study.

One of the most general and effective ways to apply the homotopy method
to the qualitative investigation of operator equations of the form

z—C(z) =0 (4)
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where C is a completely continuous operator, was developed by Leray and
Schauder [159]. In this method, the parameter A enters into the equations
linearly, i.e., the family of equations has the form

z—XC(z)=0 (O<KA<]). (5)

If for all A € [0,1] the solutions x(A) of Eq. (5) satisfy a general a priori
inequality
eI <r (0<A<T),

then Egs. (5) (and, in particular, Eq. (4), the equation of interest) are
solvable. The proof of this result is based on a topological invariant intro-
duced by Leray and Schauder, namely, the degree of a mapping. The Leray—
Schauder method has been generalized and developed in many theoretical
works and also in works of an applied character. Noteworthy here are the
works [31, 139, 145, 151, 153, 204, 214] and the bibliography therein.

The homotopy method was used by Gavurin [123] to establish the solv-
ability of operator equations in Banach spaces (cf. also Rosenbloom [195],
Polyak [191], Li [161], Zhang De-Tong [229], Wacker [228], Allgower and
Georg [5], Smale [216], Hirsch and Smale [133], Chow, Mallet-Paret and
Yorke [62], and Kellogg, Li and Yorke [141]).

The homotopy method was apparently first used for the numerical so-
lution of equations by Lahaye [154] (see also [184]). The method was de-
veloped in the works by Freudenstein and Roth [121], Shidlovskaya [207],
Davidenko [79-83], Roberts and Shipman [194], and Bosarge [48]. For a more
extensive bibliography see the monographs [184, 206].

This monograph gives an account of the applications of the homotopy
method to variational problems.






1 Preliminaries

This chapter contains the material from functional analysis that is needed in
the monograph. No proofs are given since most of the results are well known
and can be considered to be classical.

1.1 Topological, Metric, and Normed Spaces

In this section, we introduce the notions of topological, metric, Banach and
Hilbert spaces and give some specific examples of spaces which play a role in
the monograph.

1.1.1 Topological Spaces

A topological space is a set X together with a family 7 of subsets of X
satisfying the following three conditions:

(1)oeT, XeT,

(2) the union of any collection of sets from 7 belongs to 7;

(3) the intersection of any two sets from 7 belongs to 7.

A family of subsets satisfying these three conditions is called a topology on
X. The sets belonging to 7 are called open sets. A subset F' of X is called
closed if its complement X \ F is open. An open neighborhood of a subset Y of
X is an open set containing Y, and a neighborhood of Y is a set containing
an open neighborhood of Y.

Let Y be a subset of X. The family of sets {UNY : U € T} is a topology
on Y, called the induced or subspace topology on Y.

An equivalence relation on a set X is a set of pairs

RcC {(z,y) :z,y € X}

satisfying the following conditions:

(1) (z,z) € R for all z € X;

(2) (z,y) € R implies (y,z) € R;

(3) (z,y) € R and (y,2) € R imply (z,2) € R.
If (z,y) € R, then we say that x and y are equivalent. The equivalence
relation gives rise to a partition of X into pairwise disjoint subsets, called
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equivalence classes, consisting of equivalent elements. The set of equivalence
classes corresponding to R is called the quotient space of X with respect to R
and is denoted by X/R. We write [z] for the equivalence class containing
an element x. The quotient topology on X/R is defined as follows: a subset
U C X/R is open if the set

U {=}

[z]eU

is open in X. Let X; and X> be topological spaces and consider the Cartesian
product X; x Xo = {(z1,22) | 21 € X1,22 € X2}. We introduce a topology,
called the product topology on X; x X, by taking as open sets all unions of
sets of the form U; x Uy with Uy open in X; and Us open in Xo.

Let X; and X, be again two topological spaces. A mapping f : X; — X
is said to be continuous if the complete preimage f~!(U) of any open set
U C X, is an open set in X;. Two mappings fo, f1 : X1 — X2 are homotopic
(and we write fo ~ f1) if there exists a continuous mapping

f:X1x][0,1] = X2
satisfying the conditions

f(.’E,O):f()(.’L‘) ($6X1)’
flx,1) = fi(z) (z€X1).

The spaces X, and X, are homotopy equivalent if there exist continuous
mappings f: X; — Xo and g : X3 — X; such that the composite mappings
fogand go f are homotopic to the respective identity mappings. We write
X1 ~ X3 to indicate that the spaces X; and X, are homotopy equivalent.

A topological pairis an ordered pair (X, A), where X is a topological space
and A is an arbitrary subset of X. A mapping f : X1 — X5 is a mapping
of the topological pair (X1, A;) into the topological pair (X2, Az) (and we
write f: (X1, A1) — (X2, A2)) if f(A1) C Aa. There is an obvious notion of
homotopy equivalence for topological pairs similar to that introduced above
for ordinary spaces. Homotopy equivalence is an equivalence relation on any
set of topological pairs.

It is sometimes convenient to consider a topological space X as the topo-
logical pair (X, @). In the theory of Conley index, use is made of topological
pairs (X, A) in which A contains just one point; topological pairs of this kind
are called topological spaces with base point (or pointed spaces).

Here are two properties of continuous mappings of topological pairs.

Proposition 1.1.1. Consider mappings fo, f1 : (X1,41) — (X2,42), 9o,
g1 (X2, A2) — (X3,A43). If fo ~ f1 and go ~ g1, then go o fo ~ g1 o f1.

Proposition 1.1.2. If the composite mappings go f and hog in the sequence
of mappings

(K, ) L4, M) 5 i, A ) 50, A



