cambridge Monographs on Applied and Computational Mathematics |




Topology for Computing

AFRA J. ZOMORODIAN
Stanford University




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcon 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Afra J. Zomorodian 2005

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2005
Printed in the United States of America
Typeface Times Roman 9/11 pt. System WIEX 2¢  [AU]
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Zomorodian, AfraJ., 1974—
Topology for computing / Afra J. Zomorodian.
cm. — (Cambridge monographs on applied and computational mathematics ; 16)
Includes bibliographical references and index.
ISBN 0-521-83666-2 (hardback)
1. Topology. I. Title. II. Series.
QA611.Z265 2004
514—dc22
2004047311

ISBN 0 521 83666 2 hardback



CAMBRIDGE MONOGRAPHS ON
APPLIED AND COMPUTATIONAL
MATHEMATICS

Series Editors
P. G. CIARLET, A. ISERLES, R. V. KOHN, M. H. WRIGHT

16

Topology for Computing
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— Persistence of Homology — Afra Zomorodian (After Salvador Dali)

To MY PARENTS

On the left, a double-torus and a I-cycle lie on a triangulated 2-manifold. There is a box-shaped
cell-complex above. An unknot hangs from the large branch of the sapless withering tree. Through
some exertion, the tree identifies itself as a maple by bearing a single green leaf. A deformed two-
sphere, a torus, and a nonbounding loop form a pile in the center. Near the horizon, a 2-manifold
is embedded by an associated height field. It divides itself into regions using the 1-cells of its
Morse-Smale complex.



Preface

My goal in this book is to enable a non-specialist to grasp and participate
in current research in computational topology. Therefore, this book is not a
compilation of recent advances in the area. Rather, the book presents basic
mathematical concepts from a computer scientist’s point of view, focusing on
computational challenges and introducing algorithms and data structures when
appropriate. The book also incorporates several recent results from my doc-
toral dissertation and subsequent related results in computational topology.

The primary motivation for this book is the significance and utility of topo-
logical concepts in solving problems in computer science. These problems
arise naturally in computational geometry, graphics, robotics, structural biol-
ogy, and chemistry. Often, the questions themselves have been known and
considered by topologists. Unfortunately, there are many barriers to interac-
tion:

e Computer scientists do not know the language of topologists. Topology,
unlike geometry, is not a required subject in high school mathematics and is
almost never dealt with in undergraduate computer science. The axiomatic
nature of topology further compounds the problem as it generates cryptic
and esoteric terminology that makes the field unintelligible and inaccessible
to non-topologists.

e Topology can be very unintuitive and enigmatic and therefore can appear
very complicated and mystifying, often frightening away interested com-
puter scientists.

¢ Topology is a large field with many branches. Computer scientists often re-
quire only simple concepts from each branch. While there are certainly a
number of offerings in topology by mathematics departments, the focus of
these courses is often theoretical, concerned with deep questions and exis-
tential results.

Xi



xii Preface

Because of the relative dearth of interaction between topologists and computer
scientists, there are many opportunities for research. Many topological ques-
tions have large complexity: the best known bound, if any, may be exponential.
For example, I once attended a talk on an algorithm that ran in quadruply ex-
ponential time! Let me make this clear. It was

0 (2222” ) .

And one may overhear topologists boasting that their software can now han-
dle 14 tetrahedra, not just 13. But better bounds may exist for specialized
questions, such as problems in low dimensions, where our interests chiefly lie.
We need better algorithms, parallel algorithms, approximation schemes, data
structures, and software to solve these problems within our lifetime (or the
lifetime of the universe.)

This book is based primarily on my dissertation, completed under the super-
vision of Herbert Edelsbrunner in 2001. Consequently, some chapters, such as
those in Part Three, have a thesis feel to them. I have also incorporated notes
from several graduate-level courses I have organized in the area: Introduction
to Computational Topology at Stanford University, California, during Fall 2002
and Winter 2004; and Topology for Computing at the Max-Planck-Institut fiir
Informatik, Saarbriicken, Germany, during Fall 2003.

The goal of this book is to make algorithmically minded individuals fluent in
the language of topology. Currently, most researchers in computational topol-
ogy have a mathematics background. My hope is to recruit more computer
scientists into this emerging field.

Stanford, California A JZ
June 2004
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1

Introduction

The focus of this book is capturing and understanding the topological prop-
erties of spaces. To do so, we use methods derived from exploring the re-
lationship between geometry and topology. In this chapter, I will motivate
this approach by explaining what spaces are, how they arise in many fields of
inquiry, and why we are interested in their properties. I will then introduce
new theoretical methods for rigorously analyzing topologies of spaces. These
methods are grounded in homology and Morse theory, and generalize to high-
dimensional spaces. In addition, the methods are robust and fast, and therefore
practical from a computational point of view. Having introduced the methods,
I end this chapter by discussing the organization of the rest of the book.

1.1 Spaces

Let us begin with a discussion of spaces. A space is a set of points as shown in
Figure 1.1(a). We cannot define what a set is, other than accepting it as a prim-
itive notion. Intuitively, we think of a set as a collection or conglomeration of
objects. In the case of a space, these objects are points, yet another primitive
notion in mathematics. The concept of a space is too weak to be interesting,
as it lacks structure. We make this notion slightly richer with the addition of
a topology. We shall see in Chapter 2 what a topology formally means. Here,
we think of a topology as the knowledge of the connectivity of a space: Each
point in the space knows which points are near it, that is, in its neighborhood.
In other words, we know how the space is connected. For example, in Fig-
ure 1.1(b), neighbor points are connected graphically by a path in the graph.
We call such a space a topological space. At first blush, the concept of a topo-
logical space may seem contrived, as we are very comfortable with the richer
metric spaces, as in Figure 1.1(c). We are introduced to the prototypical metric
space, the Euclidean space R?, in secondary school, and we often envision our
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(a) A space (b) A topological space (c) A metric space

Fig. 1.1. Spaces.

world as R3. A metric space has an associated metric, which enables us to
measure distances between points in that space and, in turn, implicitly define
their neighborhoods. Consequently, a metric provides a space with a topol-
ogy, and a metric space is a topological one. Topological spaces feel alien to
us because we are accustomed to having a metric. The spaces arise naturally,
however, in many fields.

Example 1.1 (graphics) We often model a real-world object as a set of ele-
ments, where the elements are triangles, arbitrary polygons, or B-splines.

Example 1.2 (geography) Planetary landscapes are modeled as elevations over
grids, or triangulations, in geographic information systems.

Example 1.3 (robotics) A robot must often plan a path in its world that con-
tains many obstacles. We are interested in efficiently capturing and represent-
ing the configuration space in which a robot may travel.

Example 1.4 (biology) A protein is a single chain of amino acids, which folds
into a globular structure. The Thermodynamics Hypothesis states that a protein
always folds into a state of minimum energy. To predict protein structure, we
would like to model the folding of a protein computationally. As such, the
protein folding problem becomes an optimization problem: We are looking for
a path to the global minimum in a very high-dimensional energy landscape.

All the spaces in the above examples are topological spaces. In fact, they
are metric spaces that derive their topology from their metrics. However, the
questions raised are often topological in nature, and we may solve them easier
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by focusing on the topology of the space, and not its geometry. I will refer to
topological spaces simply as spaces from this point onward.

1.2 Shapes of Spaces

We have seen that spaces arise in the process of solving many problems. Con-
sequently, we are interested in capturing and understanding the shapes of
spaces. This understanding is really in the form of classifications: We would
like to know how spaces agree and differ in shape in order to categorize them.
To do so, we need to identify intrinsic properties of spaces. We can try trans-
forming a space in some fixed way and observe the properties that do not
change. We call these properties the invariants of the space. Felix Klein
gave this famous definition for geometry in his Erlanger Programm address
in 1872. For example, Euclidean geometry refers to the study of invariants
under rigid motion in RY, e.g., moving a cube in space does not change its
geometry. Topology, on the other hand, studies invariants under continuous,
and continuously invertible, transformations. For example, we can mold and
stretch a play-doh ball into a filled cube by such transformations, but not into
a donut shape. Generally, we view and study geometric and topological prop-
erties separately.

1.2.1 Geometry

There are a variety of issues we may be concerned with regarding the geometry
of a space. We usually have a finite representation of a space for computation.
We could be interested in measuring the quality of our representation, trying to
improve the representation via modifications, and analyzing the effect of our
changes. Alternatively, we could attempt to reduce the size of the representa-
tion in order to make computations viable, without sacrificing the geometric
accuracy of the space.

Example 1.5 (decimation) The Stanford Dragon in Figure 1.2(a) consists of
871,414 triangles. Large meshes may not be appropriate for many applica-
tions involving real-time rendering. Having decimated the surface to 5% of its
original size (b), I show that the new surface approximates the original surface
quite well (c). The maximum distance between the new vertices and the orig-
inal surface is 0.08% of the length of the diagonal of the dragon’s bounding
box.
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(a) Stanford Dragon, rep- (b) Decimated to 5% of (c) Normalized distance
resented by a triangulated the number of triangles to original surface, in in-
surface creasing intensity

Fig. 1.2. Geometric simplification.

A VNI

Fig. 1.3. The string on the left is cut into two pieces. The loop string on the right is cut
but still is in one piece.

1.2.2 Topology

While Klein’s unifying definition makes topology a form of geometry, we of-
ten differentiate between the two concepts. Recall that when we talk about
topology, we are interested in how spaces are connected. Topology concerns
itself with how things are connected, not how they look. Let’s start with a few
examples.

Example 1.6 (loops of string) Imagine we are given two pieces of strings.
We tie the ends of one of them, so it forms a loop. Are they connected the
same way, or differently? One way to find out is to cut both, as shown in Fig-
ure 1.3. When we cut each string, we are obviously changing its connectivity.
Since the result is different, they must have been connected differently to begin
with.

Example 1.7 (sphere and torus) Suppose you have a hollow ball (a sphere)
and the surface of a donut (a torus.) When you cut the sphere anywhere,
you get two pieces: the cap and the sphere with a hole, as shown in Fig-
ure 1.4(a). But there are ways you can cut the torus so that you only get one
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(a) No matter where we cut the sphere, we (b) If we’re careful, we can cut the torus
get two pieces and still leave it in one piece.

Fig. 1.4. Two pieces or one piece?

piece. Somehow, the torus is acting like our string loop and the sphere like the
untied string.

Example 1.8 (holding hands) Imagine you’re walking down a crowded street,
holding somebody’s hand. When you reach a telephone pole and have to walk
on opposite sides of the pole, you let go of the other person’s hand. Why?

Let’s look back to the first example. Before we cut the string, the two points
near the cut are near each other. We say that they are neighbors or in each
other’s neighborhoods. After the cut, the two points are no longer neighbors,
and their neighborhood has changed. This is the critical difference between
the untied string and the loop: The former has two ends. All the points in the
loop have two neighbors, one to their left and one to their right. But the untied
string has two points, each of whom has a single neighbor. This is why the two
strings have different connectivity. Note that this connectivity does not change
if we deform or stretch the strings (as if they are made of rubber.) As long as
we don’t cut them, the connectivity remains the same. Topology studies this
connectivity, a property that is intrinsic to the space itself.

In addition to studying the intrinsic properties of a space, topology is con-
cerned not only with how an object is connected (intrinsic topology), but how
it is placed within another space (extrinsic topology.) For example, suppose
we put a knot on a string and then tie its ends together. Clearly, the string has
the same connectivity as the loop we saw in Example 1.6. But no matter how
we move the string around, we cannot get rid of the knot (in topology terms,
we cannot unknot the knot into the unknot.) Or can we? Can we prove that we
cannot?

So, topological properties include having tunnels, as shown in Figure 1.5(a),
being knotted (b), and having components that are linked (c) and cannot be
taken apart. We seek computational methods to detect these properties. Topo-



