LNCS 3080

Jorg Desel
* Barbara Pernici

Mathias Weske (Eds.)

Business Process
Management

Second International Conference, BPM 2004
Potsdam, Germany, June 2004
Proceedings

© Springer




0 ) Jorg Desel Barbara Pernici
' Mathias Weske (Eds.)

Business Process
Management

Second International Conference, BPM 2004
Potsdam, Germany, June 17-18, 2004
Proceedings

LA

E200404169

@®): Springer



Volume Editors

Jorg Desel

Katholische Universitit Eichstitt-Ingolstadt, Lehrstuhl fiir Angewandte Informatik
Ostenstr. 14, 85072 Eichstitt, Germany

E-mail: joerg.desel @ku-eichstaett.de

Barbara Pernici

Politecnico di Milano, Dipartimento di Elettronica e Informazione
via Beato Angelico 23/1, 20133 Milano, Italy

E-mail: barbara.pernici @polimi.it

Mathias Weske

University of Potsdam, Hasso-Plattner-Institute for Software Systems Engineerin g
Prof.-Dr.-Helmert-Strafie 2-3, 14480 Potsdam, Germany

E-mail: mathias.weske @hpi.uni-potsdam.de

Library of Congress Control Number: 2004107855

CR Subject Classification (1998): H.3.5, H.4.1, H.5.3, K.4.3, K.4.4, K.6, J.1

ISSN 0302-9743
ISBN 3-540-22235-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

(© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 11013068 06/3142 543210



Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3080



Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo



Preface

In recent years the management of business processes has emerged as one of
the major developments to ease the understanding of, communication about,
and evolution of process-oriented information systems in a variety of applica-
tion domains. Based on explicit representations of business processes, process
stakeholders can communicate about process structure, content, and possible
improvements. Formal analysis, verification and simulation techniques have the
potential to show deficits and to effectively lead to better and more flexible
processes. Process mining facilitates the discovery of process specifications from
process logs that are readily available in many organizations.

This volume of Springer’s Lecture Notes in Computer Science contains the
papers presented at the 2nd International Conference on Business Process Man-
agement (BPM 2004) which took place in Potsdam, Germany, in June 2004.
From more than 70 submissions BPM 2004 received, 19 high-quality research
papers were selected.

BPM 2004 is part of a conference series that provides a forum for researchers
and practitioners in all aspects of business process management. In June 2003,
the 1st International Conference on Business Process Management took place
in Eindhoven, The Netherlands. Its proceedings were published as Volume 2678
of Lecture Notes in Computer Science by Springer-Verlag. A previous volume
(LNCS 1806) on Business Process Management was based on four events devoted
to this topic.

This book presents a significant view on the state of the art in business
process management, ranging from formal approaches to descriptions of tools for
the design of processes. The topics addressed by the contributions cover areas
like business process modeling, formal models, as well as analysis and verification
of business processes, process mining and workflow management, and, moreover,
case studies from various domains including medicine, technology, and logistics.

Besides its research paper track, BPM 2004 hosted a keynote presentation by
Christoph Bussler, Vice-Director of the Digital Enterprise Research Institute in
Galway, Ireland. A tutorial on workflow modeling and analysis using Petri nets
was given by Wil van der Aalst, Head of the Information Systems department in
the Faculty of Technology Management, Eindhoven Technical University (NL).
Rainer Ruggaber of SAP Corporate Research talked about SAP’s involvement in
European research projects. Thomas Volmering and Karl Wagner reported on a
recently strengthened cooperation between SAP and IDS Scheer in the context
of the new SAP software architecture, based on service technology. All these
presentations are highly appreciated.

The organizers are thankful to SAP AG, IDS Scheer and Adesso AG as well
as to the Hasso Plattner Institute for supporting this scientific event. A special
thanks goes to Jorn Lauterjung and his colleagues from Geoforschungszentrum
Potsdam, which provided the location of this year’s BPM conference. We thank



VI Preface

the local organization group at the Hasso Plattner Institute, including Hilmar
Schuschel, Katrin Heinrich and Mirko Schulze, who provided the conference Web
site and online registration system and also installed and maintained the Cyber-
Chair conference management software that we used during the reviewing pro-
cess. The group at KU Eichstétt-Ingolstadt, in particular Dorothea Iglezakis and
Birgit Eisen, collected the final versions of the research papers and prepared the
camera-ready copy of this Springer Lecture Notes in Computer Science volume.

We should like to acknowledge the excellent cooperation with Alfred Hofmann
of Springer-Verlag and his colleagues in the preparation of this volume.

Finally, we are grateful to all Program Committee members and additional
reviewers for their contribution to the success of the conference.

June 2004 Jorg Desel

Barbara Pernici
Mathias Weske



Program Committee

Wil van der Aalst, The Netherlands
Boualem Benatallah, Australia
Christoph Bussler, Ireland

Fabio Casati, USA

Piotr Chrzastowski-Wachtel, Poland
Leonid Churilov, Australia

Peter Dadam, Germany

Jorg Desel, Germany (Co-chair)
Jan Dietz, The Netherlands
Susanna Donatelli, Italy

Schahram Dustdar, Austria

Chiara Francalanci, Italy

Dimitrios Georgakopoulos, USA
Claude Godart, France

Kees van Hee, The Netherlands
Arthur ter Hofstede, Australia
Geert-Jan Houben, The Netherlands

Referees

Michael Adams

Rachid Hamadi

Organization VII

Stefan Jablonski, Germany
Gerti Kappel, Austria

Ekkart Kindler, Germany

Akhil Kumar, USA

Ronald M. Lee, USA

Dan C. Marinescu, USA
Massimo Mecella, Italy

Andreas Oberweis, Germany
Barbara Pernici, Italy (Co-chair)
Manfred Reichert, Germany
Colette Rolland, France

Michael Rosemann, Australia
Heiko Schuldt, Austria

Edward Stohr, USA

Gottfried Vossen, Germany
Mathias Weske, Germany (Co-chair)
Leon Zhao, USA

Stefanie Rinderle

Rainer Anzbock
Danilo Ardagna
Xin Bai

Donald Baker
Giuseppe Berio
Sami Bhiri

Jaap Boender
Cinzia Cappiello
Gerome Canals
Eugenio Capra
Francois Charoy
Andrzej Cichocki
Vincent Chevrier
Enzo Colombo
Fabio De Rosa
Antonio Di Leva

Sebastian Eichholz

Pascal Fenkam
Thomas Gschwind

Bodo Huesemann
Alexander Kaiser
Markus Kalb
Markus Klemen
Agnes Koschmider

Jens Lechtenboerger

Kirsten Lenz
Beate List

Emily (Rong) Liu
Udo Mayer
Christian Meiler
Kees van der Meer
Marco von Mevius
Sascha Mueller
Amedeo Napoli
Phillipa Oaks

Ilia Petrov

Olivier Perrin
Frank Puhlmann

Nick Russell

Monica Scannapieco
Orit Schwartz
Natalia Sidorova
Carla Simone

Quan Z. Sheng
Halvard Skogsrud
Justin O’Sullivan
Alexander Tararbrin
Farouk Toumani
Marc Voorhoeve
Liangzhao Zeng
Henricus M.W. Verbeek
Marc Voorhoeve
Peter Westerkamp
Darrell Woel

Moe Wynn



Table of Contents

Business Process Modeling

Consistency in Model Integration ............ ... oo, 1
Kees van Hee, Natalia Sidorova, Lou Somers, Marc Voorhoeve

Using TimeNET to Evaluate Operational Planning Processes .......... 17
Jorn Freiheit, Jonathan Billington

Business Objectives as Drivers for Process Improvement:
Practices and Experiences at Thales Naval The Netherlands (TNNL) ... 33
Jos J.M. Trienekens, Rob J. Kusters, Ben Rendering, Kees Stokla

Modeling Medical E-Services. . ..........oiiiiiiiiiiiiinenin .. 49
Rainer Anzbock, Schahram Dustdar

Formal Models in Business Process Management

OPCATeam — Collaborative Business Process Modeling with OPM ... ... 66
Dov Dori, Dizza Beimel, Eran Toch

On the Semantics of EPCs: A Framework for Resolving the
VACIOUE CIFELE + v e v wivins cmemeimmra i coimnisre o ssm s s 85 SRR AHE RS ¥EFEHEE 82
Ekkart Kindler

Goal-Oriented Business Process Modeling with EPCs and
Value-Foensed Thinking «:ssumsnimscmsnmrmssgamswesmsmwas ve curewe v 98
Dina Neiger, Leonid Churilov

Miscellaneous

A Workflow-Oriented System Architecture for the Management of
Container Transportation s :us smemesmsms a6 95 cmsms omemn emsmmems vos 116
Sarita Bassil, Rudolf K. Keller, Peter Kropf

Business to Business Transaction Modeling and WWW Support ........ 132
Mateus Barcellos Costa, Rodolfo Ferreira Resende,
Mirian Halfeld Ferrari Alves, Marcelo Vieira Segatto

Integration of Multi-attributed Negotiations within
Business: PTOCESSES: « s » vz #5555 s 5585 565 60808 § @ m5 55 smmacme emsmn o 148
Carlo Simon, Michael Rebstock



X Table of Contents

Analysis and Verification of Business Processes

Management of Knowledge Intensive Business Processes ............... 163
Norbert Gronau, Edzard Weber

SMART: System Model Acquisition from Requirements Text .......... 179
Dov Dori, Nahum Korda, Avi Soffer, Shalom Cohen

Workload Balancing on Agents for Business Process Efficiency
Based on Stochastic Model ............... ... ... ... .. ... ... . . ... .. 195
Byung-Hyun Ha, Joonsoo Bae, Suk-Ho Kang

Process Mining

Interactive Workflow Mining ............ ... ... ... .. ... .. . . ... ... 211
Markus Hammori, Joachim Herbst, Niko Kleiner

Supporting Usage-Centered Workflow Design: Why and How? .......... 227
Niko Kleiner

Mining Social Networks: Uncovering Interaction Patterns in

Business Processes ................ ... 244
Wil M.P. van der Aalst, Minseok Song

Workflow Management

Model-Driven Approach to Workflow Execution .................... .. 261
Wonchang Hur, Jae-yoon Jung, Hoontae Kim, Suk-Ho Kang

On Dealing with Structural Conflicts between Process Type and
Instance Changes ............... ... ..o 274
Stefanie Rinderle, Manfred Reichert, Peter Dadam

Cohesion and Coupling Metrics for Workflow Process Design ........... 290
Hagjo A. Reijers, Irene T.P. Vanderfeesten

Author Index ....................... ... . . ... . ... ... 307



Consistency in Model Integration

Kees van Hee, Natalia Sidorova, Lou Somers, and Marc Voorhoeve

Eindhoven University of Technology, Dept. Math and Comp. Science, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
{k.m.v.hee,n.sidorova,l.j.a.m. somers,m.voorhoeve}@tue.nl

Abstract. We present a UML-inspired approach to modeling and analysis of
complex systems. Different stakeholders of a system may have different views,
modeled with different techniques. It is essential that the various aspect models
(use cases and life cycles) provide a complete and consistent description of the
total system. Our approach based on the composition and decomposition of
(colored) Petri nets allows the integration of aspect models. We illustrate our
approach by a case study.

1 Introduction

The analysis and engineering of complex systems cannot be performed by a single
person. So, several system architects are involved, modeling various subsystems. Also
the system will have several stakeholders with different views, which also requires
various models for being able to validate the proposals of the architects. Different
aspect models require different modeling techniques. UML [3] offers a wide range of
such techniques, most of them being diagram techniques. A UML description of a
moderate-size system contains hundreds of diagrams of various kinds. Each diagram
models one or more aspects of the considered system. By concentrating on a few as-
pects at a time, validation by stakeholders becomes possible.

As the project proceeds, the aspect models will be integrated, while adding detail
and rigor. This may lead to the discovery of inconsistencies. Early detection of such
inconsistencies will help to reduce development costs, so the software industry is
hard-pressed for methods to determine and preserve the consistency between the vari-
ous models. We believe that there is no “silver bullet” for achieving this. The “honest”
way is by a single model that integrates all aspects modeled so far. From this inte-
grated model, the aspect models are derived as projections. If and only if such an
integrated model can be found, the models made so far are consistent.

In this paper, we indicate how integrated models can be derived from aspect mod-
els in early stages of the development process. The key ingredients are Petri nets with
synchronization and projection operators. We start with various aspect models that are
combined by synchronization, resulting in an integrated model. From it, scenario's can
be derived by projection in order to allow validation. There exist many tools that sup-
port such an approach, some of them, e.g. ExSpect [7] and CPN [9], allow to add pre-
and postconditions, resulting in a functional prototype.

J. Desel, B. Pernici, and M. Weske (Eds.): BPM 2004, LNCS 3080, pp. 1-16, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 K. van Hee et al.

The synchronization operator is closely related to the call mechanism for methods;
the model thus can be used to support the design and implementation phases. We
illustrate our proposal with a case study of the well-known library system, which is
Jjust large enough to illustrate the key aspects of our method.

In section 2, we introduce WF nets, a subclass of Petri nets used for our models and
our operators for composing and decomposing them. In section 3, we describe the
modeling, verification, and validation process. In section 4, we illustrate our process
with a library case study, and we also show how our models can be extended, adding
more functionality. We conclude with a comparison with related work.

2 Petri Net Models, Synchronization, and Projection

We assume the reader has some knowledge of “classical” place-transition nets (bipar-
tite directed graphs), markings (distributions of tokens in places) and the interleaving
firing rule. A transition may fire in marking M iff it can consume the necessary tokens
from M; as a result of this firing, a new marking M’ is reached, consisting of M with
the consumed tokens removed and produced tokens added. A net defines a reachabil-
ity relation between its markings: a marking M’ is reachable from a marking M iff a
finite sequence of firings exists starting in M and ending in M".

Marked nets are too general for modeling. In [1], the class of WF (workflow) nets
is defined, which can be compared to UML activity diagrams. A WF net possesses a
unique source and a unique sink place. Every node of a WF net, seen as a directed
graph, lies on a directed path from the source to the sink place. A WF net possesses an
initial marking (one token in the source place) and a final marking (one token in the
sink place). It is sound iff (1) from the initial marking it is possible for every transition
t to reach a marking where # may fire and (2) the final marking is reachable from any
marking M that is reachable from the initial marking. Sound WF nets are the very nets
used for modeling use cases and object life cycles, c.f. [4].

Fig. 1. Example of a WF net

In Fig. 1 a WF net is depicted. The places if are respectively the source and sink
places. This net is sound, which can be verified by examining the reachable markings.
For example, from the initial marking, a marking can be reached with only two tokens
in p (e.g. by firing b, then c then twice d). From this marking, it is possible to reach
the final marking by firing a, then e.



Consistency in Model Integration 3

For convenience, we omit in this paper the source and sink place from the WF nets.
Thus a WF net has one or more start transitions (without input places) and end transi-
tions (without output places). The firing of transitions models the occurrence of
events. If a transition bordering the source place fires, a “create” event occurs, since in
a sound net this transition does not consume any tokens. Analogously, destroy events
are firings of transitions bordering the sink place. The soundness property now states
that whatever is caused by a single creation can eventually be undone by a single de-
struction.

For Petri nets there are several methods for analyzing the behavior. Some of these
methods use only the structure of the Petri net and not the underlying state space. T-
invariants provide such a method. A T-invariant can be computed by standard linear
algebra and can be related to sequences of transitions that return the system to the
state before the sequence was executed. We use T-invariants in the validation process.

The tokens in the places refer to objects; every place contains references to objects
of one and the same class. Initially, we abstract from the attributes of the objects,
allowing “classical” analysis of our nets. Eventually, our models will consist of high-
level nets, e.g. colored nets [9], specifying pre- and postconditions for the firing of
transitions. A transition will fire only if its consumption satisfies the precondition; it
will then produce tokens in accordance with the postcondition.

We add operators for composing and decomposing net models, which are essential
for the integration of models and for checking their consistency. The composition
operator is called synchronization and is indicated by a dotted line connecting two
transitions. When transitions synchronize in a high-level net, data may be exchanged
in either direction. In Fig. 2, an example net with synchronization is shown at the left.
The synchronization result is the net in the middle, which is obtained by transition
fusion: the transitions participating in a synchronization are glued together. This
mechanism resembles the synchronization within process calculi like CCS [10]. Syn-
chronization between sound nets does not always result in a sound net; the middle net
in Fig. 2 is not sound, since transition cd cannot fire.

Fig. 2. Example of synchronization and projection

The decomposition operator is called projection. Projection of a net w.r.t. a subset
S of the net's places is obtained by removing all the places not in S plus the edges
leading to and from them. Transitions that become isolated are removed as well. The
right-hand net shows the projection of the middle net w.r.t. the set {p,q.r}. f Nisa
connected net, P its set of places, and S < P, then N can be obtained by synchronizing
its projections w.r.t. S and P\ S.



4 K. van Hee et al.

When creating WF nets for use cases, the transitions describe events that can occur.
If a net models an object life cycle, the transitions represent methods of the object's
class. In the design phase, the synchronization of methods will result in one of them
calling the other. The following rule describes the essence of our approach: deriving
an integrated model from aspect models and checking their consistency:
*  The integrated model is derived from the aspect models (use cases and life cycles)

by synchronization.

¢ All aspect models should be derivable from the integrated model by projection.

3 Modeling Process

We focus on deriving an integrated logical model that captures the functionality of the
system, we have left out other engineering activities. In general, we have a succession
of elicitation, modeling, verification and validation steps. We split the modeling step
into three steps: process modeling, data modeling, and transformation modeling. In
the elicitation steps the stakeholders play an important role. There are several tech-
niques to obtain useful information from a group of stakeholders. Well-known are
“brown paper sessions” where stakeholders write down individually the most impor-
tant items, like issues, functions, scenario's, or objects. These items are stuck to a
brown paper board and grouped by the moderator into related groups. Then the items
are discussed and terminology is fixed. These sessions are repeated with different
topics. Group decision support systems [11] provide computerized support. The mod-
eling step is done by system architects, who also perform verification, possibly “on the
fly” during modeling using “correctness by construction”, sometimes after modeling
(like verifying the integrated model). After modeling and verification comes validation
with the help of stakeholders. As a result, a redesign may be needed.

The modeling, verification and validation steps are iterated until the stakeholders
are satisfied with the logical model. At some stage when use cases have become sta-
ble, user interface designers can start to define screens containing forms and buttons.
After having established the logical model, it is extended to accommodate for the
designed user interface. We will describe the successive phases and steps in more
detail. Remember that stakeholders are involved in phases 1 and 6 only.

Step 1: Elicitation

(a) Make a list of use cases, indicated by a name and some additional comments by
the stakeholders.

(b) Define some allowed and explicitly forbidden scenario's (event sequences) for
each use case.

(c) Identify the classes of objects that play a role in the scenario's.

(d) List relationships between object classes. The existence of these relationships is
triggered by use case events that involve more than one object.

(e) Collect relevant attributes for the objects.

(f) Find static constraints that the system's state (the set of all living objects) should
satisfy at all time.



Consistency in Model Integration 5

Step 2: Process Modeling

(a)

(b)

(c)

Create WF nets for the use cases. Each WF net should combine the allowed sce-
narios for one use case and disallow the forbidden ones.

Create WF nets for the object life cycles. The transitions are the methods of the
classes.

Integrate the workflows by identifying the transitions in use cases and object life
cycles that must be synchronized. If necessary, adapt use cases and/or life cycles.

Step 3: Data Modeling

(2)

(b)

(©)

Construct the class model with relationships and attributes. We prefer functional
relationships.

Formalize the static constraints. Use logical predicates that can be translated back
into natural language with increased precision. Add other common-sense static
constraints.

Define global variables. For each object class we define a global variable, called
object store or object file. All objects that are active in the system reside in an
object store. Also, other global variables like the current date or time are defined.

Step 4: Transformation Modeling

(a)

(b)

()

Combine the process model and the data model. Establish the relationships be-
tween object classes and methods. For each class we determine whether the meth-
ods create, read, update, or destroy objects from it (a CRUD-matrix).

Determine the input and output parameters of the methods: places, global vari-
ables and additional parameters, e.g. for the user interface.

Determine pre- and postconditions of the methods. The end product is the high-
level integrated model.

Step 5: Verification

(a)
(®)
(©)
(d)

(e)

Check the soundness of all workflows: use cases, object life cycles, and the inte-
grated model.

Check that all use case nets can be derived from the integrated model by projec-
tion.

Check that each relationship in the class model is created somewhere.

Check the preservation of the static constraints. Some constraints may be tempo-
rarily violated during the execution of a certain sequence of transitions (a trans-
action) but they should be valid after the transaction.

If necessary, return to modeling.

Step 6: Validation

(2)

Validate the integrated model by spawning new scenarios from T-invariants of the
nets.



6 K. van Hee et al.

(b) Validate all static constraints.
(c) Present the scenario's with data transformations added.
(d) If necessary, return to one of the modeling steps.

Step 7: User Interface Integration

(a) Make additional classes and methods to accommodate the user interface.

(b) Synchronize the additional methods with the existing ones. If necessary, adapt the
logical model.

The steps are not executed in the order presented; it is important that verifications
and validations are effectuated as soon as possible in order to reduce costs. For exam-
ple, step 5a should immediately succeed steps 2abc for the modeled WF nets. Usually,
the nets created in 2ab can be verified by hand; the net in 2¢ often needs tool support
[14]. Step 6a can succeed step 2c after verification. Indeed, we have drawn a rather
sizable WF net depicting the described process. Afterwards, the logical model is
translated into specifications for software components. These components can be
constructed from scratch or the can be assembled from existing components. For com-
ponent selection, the scenario's are helpful.

The steps above apply to systems of moderate size. Large systems should be split
into subsystems to which the above steps apply. By synchronization the subsystems
are integrated as suggested in section 5 of this paper. This extra integration step
should be verified and validated similarly to the description above, concentrating on
the interface between the subsystems. We will illustrate the above approach with an
example case study.

4 Case Study: A Library System

In the case study we consider a more or less standard library system. Stakeholders are
personnel and members that lend books. Several copies of the same book may exist.
Members can make reservations for books that are not available. We focus on the
modeling steps, in particular the process modeling step. Therefore we treat the other
steps rather superficially.

member personnel

Fig. 3. Library use case diagram



Consistency in Model Integration 7

4.1 Elicitation

Fig. 3 depicts typical use cases like lending a book, reserving and then lending a book,
ordering books, and maintaining the member file and book catalogue. In Fig. 4 a
loan/reserve use case net is given. The initial transition (event) is s, which creates a
token in place b denoting the reservation by a member of a book in the catalogue. If
the book is available, a loan is started (transition /;). If the book is not available, the
token stays in place b and if a matching book is returned, the reservation object can go
to the notified state d by transition n (notification). From this state, transition /, can
occur resulting in a loan (a token in f). A lent book can get lost (transition /o) or it will
be returned (transition re).

Fig. 4. Request / lend / reserve use case

Similar use cases can be found for maintenance and ordering activities. This is as
complicated as it gets in our library case, but for other systems a use case may exhibit
concurrent behavior, so it may have states that are distributed over various places. So
far we encountered two object classes, reservations in places b,d, and loans in place f.
When treating the other use cases, we encounter members, book orders, book copies,
and book titles. It is necessary to distinguish book titles and copies, since several
copies can exist for the same title. We determine the following classes (see Fig. 5):

MEM library member

RSV reservation of title by member
LOAN loan of copy by member
TITLE  book title

BCPY  copy of title

ORD order of title

MEM LOAN BCPY

-

RSV TITLE ORD

Fig. 5. Relations between object classes



