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PREFACE

The mathematical language of modern quantum mechanics is operator
theory. Operators play there a role similar to functions in classical
mechanics, probability theory and statistics. However, while the use of
functions in classical theories is founded on premises which seem
intuitively quite clear, in quantum theory the situation with operators is
different.

Historically the ‘matrix mechanics’ of Heisenberg and the ‘wave
mechanics’ of Schrédinger which gave rise to the contemporary form of
quantum theory, originated from ingenious attempts to fit mathematical
objects able to reflect some unusual (from the macroscopic point of
view) features of microparticle behaviour—in particular, a peculiar
combination of continuous and discrete properties. The ‘probabilistic
interpretation’ developed later by Born and others elucidated the mean-
ing of operator formalism by postulating rules connecting mathematical
objects with observable quantities. However a good deal of arbitrariness
remained in these postulates and the most convincing argument for
quantum-theoretical explanations was still the ‘striking’ coincidence of
theoretical predictions with experimental data. This state of affairs gave
rise to numerous attempts, on one hand, to find classical alternatives to
quantum theory which would give an equally satisfactory description
of the experimental data, and on the other hand, to find out physical and
philosophical arguments for justifying the inevitability of the new
mechanics.

Notwithstanding the impressive philosophical achievements in this
field there was and still is a need for the structural investigation of
quantum theory from a more mathematical point of view aimed at
elucidating the connections between the entities of the physical world
and the elements of operator formalism. The present book is essentially
in this line of research opened by the classical von Neumann’s treatise
“Mathematical Foundations of Quantum Mechanics”. However it differs
from most subsequent investigations by the strong emphasis on the
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statistical rather than ‘logical’ essence of quantum theory; it gives an
account of recent progress in the statistical theory of quantum
measurement, stimulated by the new applications of quantum
mechanics, particularly in quantum optics.

The first three chapters give an introduction to the foundations of
quantum mechanics, addressed to the reader interested in the structure
of quantum theory and its relations with classical probability. In spite of
the mathematical character of the presentation it is not ‘axiomatic’. Its
purpose is to display the origin of the basic elements of operator
formalism resting, as far as possible, upon the classical probabilistic
concepts.

The present revision is not an end in itself—it emerged from the
solution of concrete problems concerning the quantum limitations to
measurement accuracy, arising in applications. So far there has been no
general approach to such kind of problems. The methods of mathemati-
cal statistics adapted for classical measurements required radical quan-
tum modification. The last chapters of the book are devoted to the recently
developed quantum estimation theory, which is an analog of the cor-
responding branch of mathematical statistics.

We now give a more detailed account of the contents of the book. In
Chapter I the general concepts of state and measurement are introduced
on the basis of statistical analysis of an experimental situation. From the
very beginning this approach leads to a substantial generalization of the
Dirac-von Neumann concept of an observable. Mathematically it is
reflected by the occurrence of arbitrary resolutions of identity in place
of orthogonal ones (spectral measures) and the repudiation of self-
adjointness as an-indispensable attribute of an observable. In this way
nonorthogonal resolutions of identity like the ‘overcomplete’ system of
coherent states known in physics for rather a long time find their proper
place in quantum phenomenology. The new concept of quantum
measurement is central for the whole book.

The notion of statistical model exploited in Chapter I is quite general
and may find applications different from quantum theory. It gives us a
new insight into the still controversial ‘hidden variables’ problem.

In Chapter II the elements of operator theory in Hilbert space are
introduced to provide mathematical background for the subsequent
material. As compared to standard presentations relatively much atten-
tion is paid to nonorthogonal resolutions of identity and related ques-
tions. A novel feature is also the introduction of the ¥’ spaces of
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observables associated with a quantum state and playing a role similar to
the Hilbert space of random variables with finite second moment in
probability theory. These ¥’ spaces give the framework for a calculus of
unbounded operators.

Of fundamental importance to quantum theory are groups of sym-
metries. In Chapter III elementary quantum mechanics is considered
from this point of view. An important result of this discussion is the
isolation of the notion of covariant measurement which ties physical
quantities with certain classes of resolutions of identity in the underlying
Hilbert space. In this way we construct quantum measurements
canonically corresponding to such quantities as time, phase of harmonic
oscillator, angle of rotation and joint measurement of coordinate and
velocity. Allowing the broader concept of quantum measurement enables
us to resolve old troubles of quantum theory connected with the non-
existence of self-adjoint operators having the required covariance pro-
perties.

Chapter IV is devoted to a more advanced study of covariant
measurements and extreme quantum limits for the accuracy of estima-
tion of physical parameters. The latter problem becomes important in
view of the progress in experimental physics. We present a unified
statistical approach to ‘non-standard’ uncertainty relations of the ‘angle—
angular momentum’ type. They appear to be related to the quantum
analog of the Hunt-Stein theorem in mathematical statistics. A general
conclusion which can be drawn from Chapter IV is that the require-
ments of covariance and optimality, i.e., extremal quantum accuracy,
determine the canonical measurement of a ‘shift’ parameter, such as
angle, coordinate, time, uniquely up to a ‘gauge’ transformation.

An example of a situation where quantum limitations are important is
provided by optical communication. As is known ‘‘quantum noise”
distorting the signal in the optical range can be much more significant
than the thermal background radiation. As in ordinary communication
theory the problem of signal estimation arises, but now it requires a
specifically quantum-theoretic formulation and solution.

Chapter V is devoted to the so called Gaussian states which, in
particular, describe radiation fields in optical communication theory. The
presentation is intended to make maximal use of the remarkable parallel
with the Gaussian probability distributions. An important role is played
here by quantum characteristic functions.

In Chapter VI the general inequalities for the measurement mean-
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square errors are derived, which are quantum analogs of the well-
known Cramer—Rao inequality in mathematical statistics. The best un-
biased measurements of the mean-value parameters of a Gaussian state
are described.

Needless to say, the present book cannot (and is not intended to)
replace the standard textbooks on quantum mechanics. Most of the
important topics, such as perturbation theory, are apparently out of its
scope. Nor does it pretend to give a full account of quantum measure-
ments. We have discussed only those problems which concern
measurement statistics and do not require consideration of state changes
after measurements. The references to the relevant work on ‘open’
quantum systems and quantum stochastic processes can be found in the
comments.

The author’s intention was to write a book accessible to a wide circle
of readers, both mathematicians and physicists. As a result, the presen-
tation, being in general mathematical, is rather informal and certainly not
‘the most economic’ from a mathematical point of view. On the other
hand, it neglects some subtleties concerning measurability etc. As a rule
a rigorous treatment can be found in the special papers refered to. The
necessary background for the whole material is knowledge of fun-
damentals of the probability theory. Mathematically the most elemen-
tary is Chapter I which uses mainly finite-dimensional linear analysis.
The functional analytic minimum is given in Sections 1-6 of Chapter II,
and a mathematically educated reader may just glance over it. On the
other hand, a reader familiar with quantum mechanics can omit the
detailed discussion of such topics as harmonic oscillators and spin in
Chapter III, included to make the presentation self-contained, and
concentrate on less familiar things.

The Dirac notation is used intensively throughout the book but with
round brackets for the inner product as accepted in mathematical
literature. The angle brackets, associated with the averaging symbol in
statistical mechanics, are reserved for the different inner product
defining the correlation of a pair of observables. To denote a quantum
state as well as its density operator we use the letter S (not the usual p)
allied to the notation P for the classical state (probability distribution).
The double numeration for formulas and theorems is accepted within
each chapter; references to items from other chapters also contain the
number of the chapter.

The author’s thanks are due to Prof. D.P. Zelobenko and the late Prof.
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Yu.M. Shirokov who read the manuscript and made useful comments.

In translating the book the author took the opportunity of improving
the presentation which concerned mainly Chapters III, IV. Few
references were added. The author is grateful to Prof. Yu.A. Rozanov
and Prof. P.R. Krishnaiah for providing the opportunity of translating
this book for North-Holland Series in Statistics and Probability.
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CHAPTER |

STATISTICAL MODELS

1. States and measurements

Any theoretical model ultimately relies upon experience—the frame-
work for a model is constituted by the array of experimental data
relevant to the study of the object or phenomenon. Let us consider a
very schematic and general description of an experimental situation and
try to trace back the emergence of the principal components of a
theoretical model.

The fundamental reproducibility condition requires at least in prin-
ciple the unrestricted possibility of repetition of an experiment. Con-
sidering a sequence of identical and independent realizations of some
experimental situation one always sees that practically the data obtained
are not identically the same but subject to random fluctuations, the
magnitude of which depends on the nature of the experiment and of the
object under investigation.

There exist large classes of phenomena, for example, planetary
motion or constant electric currents, in which these random fluctuations
can be both practically and theoretically ignored. The corresponding
theories—classical celestial mechanics and circuit theory—proceed from
the assumption that the parameters describing the object can be
measured with arbitrary accuracy. or, ultimately, with absolute pre-
cision. In such cases the object is said to admit deterministic description.
Such a description, however self-contained it seems to be, is usually
only an approximation to reality, valid in so far as it agrees with
the experience.

The fruitfulness of the deterministic point of view in the classical
physics of the 18-19th centuries gave rise to the illusion of its uni-
versality. However, with the penetration of experimental physics into
the atomic domain the inapplicability of the classical deterministic
approach and the relevance of statistical concepts in this domain became
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more and more evident. The behaviour of atomic and subatomic objects
is essentially probabilitic: an ordinary way to extract information about
them is to observe a large number of identical objects to obtain statisti-
cal data. The interested reader can find about the experimental evidence
for statistical description in microphysics, which is now generally ac-
cepted, in any contemporary tract on quantum physics.

The possibility of statistical description presumes the fulfilment of the
following statistical postulate, incorporating the previous requirement of
reproducibility: the individual results in a sequence of identical, in-
dependent realizations of an experiment may vary, but the occurrence of
one or another result in a long enough sequence of realizations can be
characterized by a definite stable frequency. Then, abstracting from the
practical impossibility of performing an infinite sequence of realizations,
one can adopt that the results of the experiment are theoretically
described by the probabilities of various possible outcomes. More
precisely, we must distinguish an individual realization of the experi-
ment which results in some concrete outcome from the experiment as a
collection of all its possible individual realizations. In this latter sense,
the final results of the experiment are theoretically described by prob-
ability distributions. The deterministic dependence of the experimental
results on the initial conditions is replaced by the statistical one: the
function of the initial data is now the output probability distribution.

As an example consider a beam of identical independent particles
which are scattered by an obstacle and then registered by a photographic
plate, so that an individual particle hitting the plate causes a blackening
of the emulsion at the place of the collision. Exposing a beam which
consists of a large enough number of particles will result in a photo-
graphic picture giving the visual image of the probability density for the
point at which an individual particle hits the plate. The natural light is
the chaotic flow of an immense number of specific corpuscules—the
photons. The well-known optical diffraction pictures present the images
of the probability density of an individual photon scattered by an
aperture.

Of course, the statistical description is by no means subject to atomic
or subatomic phenomena. When investigating a system which consists of
a large number of components (e.g., a gas or a liquid) the experimenter
has at his disposal only a very restricted set of parameters to vary (say,
pressure, volume or temperature). An immense number of parameters,
giving a detailed description for the behaviour of subsystems of the system
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are out of control; their uncontrolled changes may substantially influence
the results of measurements. A study of these fluctuations is essential for
understanding the mechanisms of phenomena occurring in large systems.
The statistics of observations is most important in problems of information
transmission, where the fluctuations in the physical carriers of information
are the source of various ‘noises’ distorting the signal.

The statistical approach is often appropriate in biometrical research.
In studying the effect of a medicine, a physician can take into account a
limited number of parameters characterizing his patients such as age,
blood group etc. However the effect of the treatment in each individual
case will depend not only on these ‘integral’ parameters, but also on a
number of other internal factors which were not, or could not be taken
into account. In such cases the dependence of the effect on the ‘input
parameters’ is not deterministic and often can be successfully described
statistically.

These two examples show that the origin of fluctuations in results of
measurement may be uncertainty in the values of some ‘hidden vari-
ables’ which are beyond the control of the experimenter. The nature of
randomness in atomic and subatomic phenomena is still not so clear,
though the relevance of the statistical approach is confirmed here by
more than half a century experience of applications of quantum theory.
We shall not touch here the issues concerning the nature of randomness
in microscopic phenomena, but we shall comment on some mathematical
aspects of the relevant ‘problem of hidden variables’ in Section 7. The
main attention we shall pay here to the consequences of the statistical
postulate irrespective of the nature of the object under consideration.
We shall see that already on this very general level the notions of the
state and the measurement arise, which play a basic role, in particular, in
quantum theory.

In any experiment one can distinguish the two main stages. At the first
stage of preparation a definite experimental set-up is settled, some initial
conditions or ‘input data’ of the experiment are established. At the
following stage of the experiment the ‘prepared’ object is coupled to a
measuring device, resulting in these or the other output data (Fig. 1).

Conventionally, one may conceive the object as a ‘black box’,
at the ‘input’ of which one can impose some initial conditions S.
After the object has been definitely prepared, some measurement is
performed, resulting in the output data u. These data may be of arbitrary
nature; they may be discrete if the measuring device registers the
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occurrence of some events, e.g., the presence or absence of some
particles; they may be represented by a scalar or vector quantity, if the
measuring device has one or several scales; at last the result of a
measurement may be a picture of a whole trajectory, as in a bubble
chamber. To give a uniform treatment for all these possibilities we
assume that the outcomes of measurement form a measurable space U
with the o-field of measurable subsets #(U). In the concrete cases we
shall deal with, U will be usually a domain in the real n-dimensional
space R" with the Borel o-field generated by open sets (or by multi-
dimensional intervals). A measurable subset B C U corresponds to the
event: the result of the measurement u lies in B.

According to the statistical postulate, a result of an individual
measurement can be considered as a realization of a random variable
taking values in U. Let us(du) be the probability distribution of this
random variable. The subscript S reflects the dependence of the statis-
tics of the measurement upon the preparation procedure, i.e., the initial
conditions of the experiment, so that

us(B)=Pr{iu€ B |S}. B€ A(U)

1s the conditional probability of obtaining a result u € B under the initial



