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Preface

The foundation of the field of symbolic dynamics is generally credited to Jacques
Hadamard, who used infinite symbol sequences in his analysis of geodesic flow on
negatively curved surfaces in 1898. Hadamard’s symbolic techniques were soon
adopted and extended by other authors. However, the field had to wait forty years
for its christening by Marston Morse and Gustav Hedlund, who provided the first
systematic study of symbolic dynamical systems as objects of interest in their own
right. This rather prescient paper at the dawn of the computer age set the stage
for the mathematical analysis of codes and finite-alphabet communication systems
using the techniques of dynamics and ergodic theory, most notably in the pioneering
work of C.E. Shannon on the mathematical theory of communication. Fifty years
after Hadamard applied symbolic techniques to dynamics, Shannon and others were
applying dynamical techniques to symbols.

In the fifty-odd years since then, symbolic dynamics has expanded its reach to
apply, and be applied to, many areas. It has broken the confines of one dimension
to encompass multi-dimensional arrays. The six chapters of this volume provide an
introduction to the field as it is studied today and a sampler of its concerns and
applications. They are expanded versions of the lectures given in the American
Mathematical Society Short Course on Symbolic Dynamics and its Applications
held in San Diego on January 4-5, 2002. I would like to take this opportunity to
thank Jim Maxwell, Wayne Drady and the other AMS staff members who coordi-
nated the short course and worked behind the scenes to make it run smoothly.

Susan G. Williams
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Introduction to Symbolic Dynamics

Susan G. Williams

ABSTRACT. We give an overview of the field of symbolic dynamics: its history,
applications and basic definitions and examples.

1. Origins

The field of symbolic dynamics evolved as a tool for analyzing general dynamical
systems by discretizing space. Imagine a point following some trajectory in a space.
Partition the space into finitely many pieces, each labeled by a different symbol. We
obtain a symbolic trajectory by writing down the sequence of symbols corresponding
to the successive partition elements visited by the point in its orbit. We may ask:
Does the symbolic trajectory completely determine the orbit? Can we find a simple
description of the set of all possible symbolic trajectories? And, most important,
can we learn anything about the dynamics of the system by scrutinizing its symbolic
trajectories? The answers to these questions will depend not only on the nature of
our dynamical system, but on the judicious choice of a partition.

Hadamard is generally credited with the first successful use of symbolic dy-
namics techniques in his analysis of geodesic flows on surfaces of negative curvature
in 1898 [Ha]. Forty years later the subject received its first systematic study, and
its name, in the foundational paper of Marston Morse and Gustav Hedlund [MH].
Here for the first time symbolic systems are treated in the abstract, as objects in
their own right. This abstract study was motivated both by the intrinsic mathemat-
ical interest of symbolic systems and the need to better understand them in order
to apply symbolic techniques to continuous systems. However, a further impetus
was given by the emergence of information theory and the mathematical theory of
communication pioneered by C.E. Shannon [Sh].

Symbolic dynamics has continued to find application to an ever-widening array
of continuous systems: hyperbolic diffeomorphisms, maps of the interval, billiards,
complex dynamics and more. At the same time it contributes to, and finds in-
spiration in, problems arising in the storage and transmission of data, as we will
see in Brian Marcus’s chapter. Computer simulations of continuous systems nec-
essarily involve a discretization of space, and results of symbolic dynamics help us
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2 SUSAN G. WILLIAMS

understand how well, or how badly, the simulation may mimic the original. And
symbolic dynamics per se has proved a bottomless source of beautiful mathematics
and intriguing questions.

There are two excellent texts on symbolic dynamics. An Introduction to Sym-
bolic Dynamics and Coding, by Douglas Lind and Brian Marcus [LM], has the more
modest prerequisites (for example, no prior knowledge of topology or measure the-
ory is assumed), while B. Kitchens’s more compact Symbolic Dynamics: One-sided,
Two-sided and Countable State Markov Shifts [Ki] assumes basic first-year graduate
mathematics. For the most part, we have followed the notation and terminology of
[LM] in this survey. Also highly recommended is the collection [BMN] of survey
articles from the 1997 Summer School on Symbolic Dynamics and its Applications
in Frontera, Chile. The selection of topics is largely complementary to that of this
short course.

2. Two simple examples

Consider the unit interval I = [0,1) and the map f that sends z € I to {2z}, the
fractional part of 2x. We are interested in the orbit z, f(z), f?(x) = f(f(z)),....
If we wanted to trace this orbit on a computer screen we might begin by resolving
the interval into 219 pixels. However, we will content ourselves with a much cruder
discretization of space: we will break I into just two parts, Iy = [0, %) and I, =
[%, 1). We assign to  a symbolic trajectory zoz1x2 ... where z; is 0 or 1 according
as ]”(r) isin Iy or I . A little consideration will show that the expression .xgz1z5 . ..
is simply a binary expansion of the number x. Hence x is completely determined
by its symbolic trajectory. We see here an exchange of spatial information for
time series information mediated by dynamics: We can recover the complexity of
the continuum / from our crude 2-element partition, provided that we observe the
evolution of the system for all time.

What symbolic trajectories will appear in this scheme? All binary sequences
except those that end in 111.... This awkward exception can be removed by
working instead with closed intervals I = [0,1], Iy = [0,4] and I; = [3,1], and
mapping sequences to points instead of the other way around. Beginning with a
binary sequence zox1z2 ..., we can assign to it the unique point

o>

T = m ' (1s,)

=1
that has that symbolic itinerary. Then, for example, % will arise from two symbolic
trajectories, corresponding to the two binary expansions % =.1000--- = .0111....
It is common practice in the application of symbolic techniques to sacrifice strict
one-to-one correspondence for a simpler description of the set of symbolic trajecto-
ries.

Our map f now has a very pleasant symbolic representation. If = .zgz125 . . .
then f(x) = {22} = .z1zoz3.... We shift the symbolic sequence to the left and
lop off the initial symbol. The key to the utility of symbolic dynamics is that the
dynamics is given by a simple coordinate shift. Dynamic properties that might
have seemed elusive in the original setting now become transparent. For instance,
we can immediately identify the points of period 3 (that is, with f3(z) = z).
They are the eight points with repeating symbolic trajectories zozi2oz0z125 . . . .
Note that the set of points with symbolic representation beginning with some fixed
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initial string 2o ...z, is the dyadic interval [k/2"*! (k + 1)/2"*1], where k =
xo-2"+x1-2" "t 4. +x,. The orbit of a point is dense in I, visiting every interval
no matter how small, if and only if its symbol sequence contains all possible finite
strings of 0’s and 1’s.

As a variation on the first example, consider the map g(z) = {vz} on I, where
vy = (1+V/5)/2 is the golden mean. We let I, = [0, %] and I; = [;17,1]. Since
y=1+ %, we have g(Ip) = I and g(I;) = Iy. A point that lands in J;under some
iterate of g must move to Iy at the next iteration. In fact, it is not hard to see that
the set of symbolic trajectories is exactly the set of binary sequences that do not
contain the string 11.

The symbolic trajectory zoziza... corresponds to a series expansion z =
oy ' 4+ 21772 + 2272 + ---. Expansions of numbers with respect to a non-
integer base [ are called beta expansions. There is a very interesting literature
relating dynamic properties of symbolic systems obtained by beta expansions to
the number-theoretic properties of beta. The chapter by C. Frougny in [BMN]
provides an up-to-date survey.

3. Full shifts and subshifts

We let A denote a symbol set or alphabet, which for now we assume to be
finite. The (two-sided) full A-shift is the dynamical system consisting of the set of
biinfinite symbol sequences, together with the shift map o that shifts all coordinates
to the left. More formally, our space is

A% = {2 = (2;)iez: @ € AforallieZ}

and the map o : AZ — AZ satisfies (0x); = 2541 H A={0,1,...,n — 1} we call
AZ the full n-shift.

The advantage of working with biinfinite sequences is that the shift map is
invertible. However, we may also consider the one-sided A-shift AN, with the trun-
cating shift map described in the previous section. These arise naturally as symbolic
representations of noninvertible maps like the map # — {2z} on I. For simplic-
ity we state most of our definitions for two-sided shifts; the one-sided analogue is
generally clear.

We often think of an element of A% as a time series, with z representing the
present location or state of our trajectory, (z;);<¢ its past history and(z;);>¢ its
future. The action of the shift map is like a tick of the clock, moving us one step
into the future.

We consider two points of A% to be close to one another if they agree on a
large central block z_,, ...z, of coordinates. To be more concrete, we can define
the distance between distinct points z and y to be d(z,y) = 27" where n is the
smallest integer with x_, # y_, or x,, # y,. This is a metric, and induces the
product topology on A%, The map o and its inverse are continuous: if z and Y
agree on their central 2n + 1 coordinates, then oz and oy agree at least on their
central 2n — 1 coordinates.

A subshift or shift space is a closed subset of some full shift A% that is invariant
under the action of 0. For example, the set of binary sequences that do not contain
the string 11 is a subshift of the 2-shift. It is closed because its complement is
open: if a sequence contains 11 then every sequence sufficiently close to it does
as well. This subshift is often called the golden mean shift, in part because of its
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connection to the golden mean beta expansion. More generally, let F be any set
of finite strings (also called words or blocks) of symbols of A. The set of sequences
that do not contain any word of F is a subshift Xz of A%. In fact, every subshift
is of this type, as an easy topological argument will show.

If Xr is determined by a finite set F of “forbidden” words, we call Xz a
(sub)shift of finite type, or SFT for short. This is the most fully studied class of
symbolic dynamical systems, and the one that has been exploited most in the anal-
ysis of general dynamical systems. The systems originally considered by Hadamard
were of this type.

For any subshift X we will denote the set of words of length n that appear in
some element of X by B, (X), the allowed n-blocks of X. If F is a set of words
of length not exceeding m, then the SFT Xz is characterized by its set of allowed
m-blocks: By, (X) is the set of m-blocks over the alphabet A that do not contain a
word of F, and a sequence = € A% is in Xz if and only if all of its m-blocks are in
B, (X). A shift of finite type that is determined by its m-blocks is an (m — 1)-step
SFT. The idea behind this terminology is that we must look back m — 1 steps in
our symbolic sequence to see which symbols we are allowed to write next. The
golden mean shift is a 1-step SF'T, with allowed 2-blocks 00, 01 and 10. If we allow
consecutive 1’s, but no strings of three in a row, we get a 2-step SFT.

A simple example of a subshift that is not of finite type is the even shift first
studied by B. Weiss [We]. It consists of all binary strings in which two 1’s are
always separated by an even number of 0’s. Its set of forbidden words is F =
{101, 10001, 1000001, ...}. A variation on this theme is the prime gap shift, in
which two 1’s are separated by a prime number of 0’s.

A point of notation is in order before we close this section. We have been
speaking of “the”shift map o on an arbitrary subshift X. In careful parlance, two
maps are not the same if they have different domains. A shift space is really a pair
(X,0x), where X is a closed subset of some A% invariant under the coordinate shift
on that particular full shift, and oy is the restriction of that coordinate shift to X.
In these notes we use X as a shorthand for the pair (X, ox), but often the map ox
is singled out instead.

4. Coding and isomorphism

The term code is variously used in symbolic dynamics and related fields for
maps of different sorts between symbolic systems, or from a general dynamical
system to a symbolic one. For example, the one-sided golden mean shift might be
described as a coding of the map x — {yz} on the interval. It should be noted
that in coding and information theory, a mapping may be called an encoder, and
its image a code.

Within symbolic dynamics we are naturally interested in maps that preserve, at
least to some extent, the topology and dynamics of the shift space. We want nearby
points to go to nearby points, and if z is sent to y then its shift oz should go to oy. A
homomorphism from one subshift to another is a continuous map ¢ that commutes
with the shift, that is, for which ¢oo = go@. An onto homomorphism is traditionally
called a factor map, a term also used in ergodic theory, although the term gquotient
map would be more consistent with usage in other areas of mathematics. An
isomorphism (invertible homomorphism) from one subshift to another is also called
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a topological conjugacy, or simply a conjugacy, as is usual in the general theory of
dynamical systems.

We can define a factor map ¢ from the golden mean shift to the even shift as
follows: map = = (z;) to y = (y;) where y; = 1 — (x; + z;41) for all 4. Since each
1 in x is immediately preceded and followed by a 0, the 0’s in y are produced in
pairs. Clearly o¢(x) = ¢(ox). The map is continuous because it is given by a
local rule, so that a central block of y is determined by a slightly longer central
block of x. In general, a sliding block code from a subshift X to a subshift ¥ is a
map ¢ given by a local rule (¢(z)); = ®(2i—m - - - Tita), where m and a are integers
with —m < a and ® is a map from the (m + a + 1)-blocks of X to the symbols of
Y. The numbers m and a, usually taken to be nonnegative, are called respectively
the memory and anticipation of the code. An argument using the compactness
of X yields the Curtis-Hedlund-Lyndon theorem: every homomorphism between
subshifts is given by a sliding block code.

Of particular interest are the higher block codes. We can define a homomor-
phism from any subshift X into the full B, (X)-shift by the sliding block code
O(xoxy ... Tn_1) = [Tox1 ...7n_1]. Here we use the square brackets to emphasize
that the enclosed block is being treated as a single symbol in a new alphabet. Thus
when m = 2, the sequence ...z_jzgr122... is sent to

o zoixo][rex][mias] - -

This homomorphism is clearly one-to-one. Its image is the n-block presentation of
X, denoted X[

Higher block presentations provide an important technical tool in symbolic
dynamics. If X is an m-step shift of finite type, then X[™ is a 1-step SFT: the
allowed 2-blocks of X" are the blocks [0 ... Tm-1][T1...2m] where xq...2p, is
an allowed (m + 1)-block of X. Thus every SFT is conjugate to a l-step SFT.
Also, if ¢ is a sliding block code with memory m and anticipation [ as described
above, it induces a sliding block code 1 of zero memory and anticipation from
XImH to Y given by the block map U([z; ... 2ix]) = ®(Tim...2i41) from
symbols (1-blocks) of X ™+ to symbols of Y. By this device we are often able to
reduce general arguments about sliding block codes to the case of one-block codes

(¢(2))i = ().

5. Graphs and matrices

Recall that a 1-step SFT X is characterized by its set of allowed 2-blocks, that
is, by a list of which symbols may follow which in our symbol sequences. We may
represent such a system by a directed graph: the vertices are the symbols of the
alphabet A and there is an edge from a to b if and only if the word ab is allowed.
Each element (z;) of X corresponds to a biinfinite walk on the graph, following
edges from one vertex to the next. Conversely, a (finite) directed graph G with
no parallel edges determines a 1-step SFT X with alphabet equal to the set of
vertices of G. We call this the vertexr shift associated with G. The graph of the
golden mean shift is shown in figure 1. From here on, graph will always mean a
directed graph.

A graph G with n vertices is conveniently described by giving its adjacency
matriz, the n x n matrix A = (a;;) where a;; is the number of edges from the ith
vertex to the jth. Thus every vertex shift corresponds to a square matrix A of 0’s



6 SUSAN G. WILLIAMS

FI1GURE 1. Vertex graph of the golden mean shift

(01]

@goliho

[(10]

FIGURE 2. 2-block presentation of the golden mean shift

and 1’s, sometimes called the transition matriz of the vertex shift. The transition
matrix for the golden mean shift is

1 1

1 0)°

Vertex shifts capture the constraints of a 1-step SFT in an appealingly simple
way. Graphs of this sort are used in the field of stochastic processes to describe
Markov chain models. The vertices are states of a system, and an edge from a to b
is labeled by the probability of transition from state a to state b, which is assumed
to be stationary and independent of previous states. The absence of an edge from a
to b indicates zero transition probability. Then the vertex shift given by the graph
is the underlying topological space supporting the Markov chain. For this reason
1-step shifts of finite type are also called topological Markov chains.

Even if the graph G has parallel edges, we can still view it as representing a,
1-step SFT if we take the set of edges of G, instead of the vertices, as the symbol
set. The edge shift X is the set of biinfinite walks on the edges of G, that is, the
set of edge sequences (x;) such that the terminal vertex of z; is the initial vertex
of x;11 for all i. The edge shift is also denoted byX 4, where A is the adjacency
matrix of G as before.

Edge shifts allow a more efficient representation in many cases. For example,
the full n-shift is given as a vertex shift by the n x n matrix of 1’s, and as an edge
shift by the 1 x 1 matrix (n). (The full shift is a shift of finite type, with empty set
of forbidden words.) Not every 1-step SFT is an edge shift. For example, there is
no graph with two edges that represents the golden mean shift. However, if X is
the vertex shift with graph G then its 2-block presentation X2 can be naturally
identified with the edge shift of G by identifying an edge from vertex a to vertex b
with the 2-block [ab]. Hence every shift of finite type is conjugate to an edge shift.
In figure 2 we show the 2-block presentation of the golden mean shift represented
as an edge shift.

It can be seen that a subshift that is conjugate to a shift of finite type is itself
of finite type. However, the homomorphic image of an SFT may not be an SFT,
as we can see by the factor map from the golden mean shift to the even shift. The
class of subshifts that are factors of SFT are called the sofic shifts. This term,
derived from the Hebrew word for finite, was coined by B. Weiss [We]. Suppose
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F1GURE 3. Graph of even shift

Y is a factor of an SFT X. By replacing X with a higher block presentation if
necessary, we can assume that X is an edge shift X and that the factor map is a
1-block code. That is, it takes an edge sequence z = (z;) € X to y = (®(z;)) € Y
where @ is a map from edges of G to symbols of Y. If we label each edge e of G
with the symbol ®(e), then the image of an edge sequence under the sliding block
code is the sequence of edge labels. Hence any sofic shift may be represented by
a labeling of the edges of a directed graph with symbols (not necessarily distinct)
from some alphabet A. As with SFT, the elements of Y correspond to biinfinite
walks in this graph.

The 2-block code from the golden mean shift to the even shift described in the
previous section produces the edge labeling in figure 3. It is easy to see that the
prime gap system cannot be represented by a finite labeled graph, so it is not a
sofic shift.

Sofic systems have a natural connection to automata theory. We think of the
vertices of the graph as internal states of a machine, and the label on an edge from
v to v/ as the instruction that the machine, when in state v, should go to state v’
if that label is read as input. A nondeterministic finite-state automaton (NFA) is
just such a directed, edge-labeled graph, with one or more designated initial states
and accepting states. The automaton is said to accept or recognize a word b; ... b,
if this word labels a path from an initial state to an accepting state. The set of
all words accepted by an NFA is a reqular language. In this terminology, the set of
allowed blocks of all lengths in a sofic system Y is a regular language given by a
NFA in which all the states are both initial and accepting. For more on connections
between automata theory and symbolic dynamics, see [BP] or [BMN].

6. Invariants

One of the most basic questions we may ask about symbolic dynamical systems
is how we can tell when two subshifts are conjugate. Even for the simplest class
of systems, the shifts of finite type, a complete and effective classification remains
elusive.

On the other hand, we have many ways of telling that two subshifts are different.
By an invariant of conjugacy we mean any quantity or mathematical object that
we can assign to subshift that remains unchanged when we replace the subshift by
a conjugate one. There are several well-known invariants that can be defined for
dynamical systems in general, and others that apply only to shift spaces, or to the
smaller class of SF'T. We list a few:

6.1. Periodic point count. If f is a homeomorphism of a compact space X,
we denote by Fix, (X) the set of all x € X with f"(z) = z. We will call these the
period n points of the dynamical system. Note that with this terminology, a period
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n point is also a period m point if m is a multiple of n. We distinguish the smallest
such n by calling it the least period of x. A conjugacy between dynamical systems
preserves periods of points, so conjugate shifts have the same cardinality of period
n points for every n.

As we observed before, for a shift space the period n points are those sequences
(z;) with z;4,, = x; for all ¢. If the alphabet A has r symbols then there are at
most r™ period n points.

It is a well-known fact that in a graph with adjacency matrix A, the number of
walks of length n from vertex ¢ to vertex j along the edges of the graph is just the
17 entry of A™. For an edge shift X4 the period n points correspond to walks of
length n with the same initial state and final state . Hence the number of period
n points is easily computed as the trace, or sum of the diagonal entries, of A™.

If the number p,(X) of period n points of X is finite for all n, the periodic
point count can be encoded in the Artin-Mazur zeta function of X. This is the
power series

o0
X
Cx(t) =exp ( Z p"i )t")
n=1 ’
For the SFT X4 given by an r x r transition matrix A, this function takes the

remarkably simple form
1
det(I —tA)
1
trxa(t=1)’
where Y 4 is the characteristic polynomial of A. This formula, known as the Bowen-
Lanford formula, can be verified by putting A in its Jordan normal form and using

the trace result cited above. More generally, it follows from a theorem of Manning
[Ma] that every sofic system has rational zeta function.

Ca(t) =
6.1)

6.2. Topological entropy. Topological entropy was defined in [AKM] for
general compact dynamical systems, in analogy with the concept of measure theo-
retic entropy developed earlier by Shannon and by Kolmogorov and Sinai. We will
not give the general definition, which is fairly involved, since there is a much simpler
formulation for the special case of symbolic dynamical systems. This formulation
can be motivated in terms of information theory.

Think of an allowed n-block of a subshift X as the information we would gain
by observing our symbolic dynamical system for n ticks of the clock. If X is the
full 2-shift, the n-block may be any one of the 2" binary strings of length n, so by
recording what particular n-block occurs we gain n bits of information, or one bit
per symbol. However, if X is the golden mean shift then not all binary strings can
occur. We gain less information from observing a particular block since there are
many blocks that we could have ruled out in advance. The number N, of binary
strings of length n with no consecutive 1’s satisfies the Fibonacci recurrence relation

Nn+2 = ]Vn+1 + Nna

since we can form an allowed (n + 2)-block either by tacking a 0 onto an allowed
(n + 1)-block or by putting 01 after an annowed n-block. The number N, is
the (n + 2)-th Fibonacci number, and grows asymptotically as Cvy™ where C is a
constant and v = (14 v/5)/2 is the golden mean. We may say that the amount of
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information we gain by observing a particular n-block of the golden mean shift is
about log, (Cy") = nlog, v + log, C bits, or roughly log, () bits per symbol.
We define the (topological) entropy of a shift space X to be the limit

1
hX)= nlglolo - log N,

where N, = N, (X) is the number of allowed n-blocks of X. We can describe h(X)
as the per-symbol information rate of the shift, or as the exponential growth rate
of the number of n-blocks. That this limit exists (and is equal to the infinum of the
sequence) can be established from the observation that Npin < Ny, - N,,. Whether
we use natural or base 2 logarithms is a matter of personal proclivity; with the
natural log we are measuring information in nats instead of bits.

If Y is a factor of X given as the image of a sliding m-block code, then the
number of n-blocks of ¥ cannot exceed the number of (n + m)-blocks of X. Thus

h(Y) = lim L] log N,,(Y)

n—oo n

1
lim — log Ny (X)

(6.2) <
= ( lim n:m)h(X) = h(X).

Since conjugate shifts are factors of one another, they have equal entropy.

We see immediately that the entropy of the full r-shift is log r, since there are
r™ words of length n. For a shift of finite type X4 given by a transition matrix
A, the number of allowed n-blocks is the sum of the entries of A™. By a result
known as the Perron-Frobenius theorem, every square nonnegative matrix A has
a nonnegative real eigenvalue A4 (the Perron-Frobenius eigenvalue) that is greater
than or equal to the modulus of every other eigenvalue of A. For the golden mean
shift A4 = . It can be shown that in general, h(X4) =log \a.

n

6.3. Algebraic invariants for shifts of finite type. As we have seen, for
a shift of finite type X4 the number of period n points, the zeta function and the
entropy can all be simply expressed in terms of algebraic invariants of the transition
matrix A. We can see from the invariance of the zeta function that if X 4 and Xp
are conjugate SF'T then A and B must have the same characteristic polynomial,
up to some factor t*. In fact a stronger statement is true: the Jordan forms of the
invertible parts of A and B must be the same.

Another useful algebraic invariant is the Bowen-Franks group. If Aisanr x r
transition matrix, its Bowen-Franks group is the quotient of Z" by its image under
the matrix [ — A:

BF(A)=Z"]Z"(I — A).
If X4 is conjugate to Xp then the Bowen-Franks groups of A and B must be
isomorphic [BF]. This condition is easily checked by computing the elementary
divisors of A and B. The Bowen-Franks group is, in fact, invariant under flow
equivalence of SFT, a weaker equivalence than conjugacy.

One of the most sought-after goals in symbolic dynamics has been a complete
and effective classification of shifts of finite type in terms of their transition matrices.
In 1973 R. Williams [Wi] introduced two important equivalence relations on the
set of square matrices over the non-negative integers, shift equivalence and strong
shift equivalence. He showed that finite type shifts X4 and Xpg are conjugate if
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and only A and B are strong shift equivalent. Strong shift equivalence implies
shift equivalence; the converse statement became known as the shift equivalence
conjecture or Williams conjecture. The importance of the conjecture lies in the
fact that latter equivalence is more tractable: in fact, it is known to be decidable
[KR1]. Jack Wagoner’s chapter relates the developments that led in 1997 to a
counterexample to the shift equivalence conjecture by K. H. Kim and F. Roush
[KR2] following joint work with Wagoner, and outlines the current state of affairs.

Crucial to the solution of the shift equivalence problem was the study of the
group of automorphisms, or self-conjugacies, of a shift of finite type. Bob Devaney’s
chapter will take us a step beyond Hadamard’s inspiration by showing how the au-
tomorphism group of a shift can encode information from other dynamical settings,
in this case families of complex polynomial maps.

7. Wider vistas

There are several ways in which we can relax our notion of symbolic dynamical
system to get a larger class of systems. One is to allow a countable alphabet in
place of a finite one. This makes the shift space noncompact, which introduces
some complications, for example in finding an appropriate definition of entropy.
The theory of countable state topological Markov chains—vertex shifts on a graph
with countably many vertices but only finitely many edges entering or leaving each
edge—is of particular interest. A good introduction to this topic is Chapter 7 of
[Ki].

We could instead choose our symbol set to be a compact group such as the
circle T = R/Z. Although this takes us far from the original idea of a symbolic
dynamical system as a discretization of space, if our map is still a coordinate shift
map then some of the spirit and techniques remain. We will encounter shift spaces
with alphabet T in Doug Lind’s chapter.

The study of a dynamical system (X, o) is really the study of the behavior of
X under the iterates o™ of 0. We may describe this as an action of the group Z on
X: for every n € Z we have a coordinate shift map o™ that shifts all coordinates by
n, with 6™*t"™ = ¢ o ¢™. In general, an action of a group G by homeomorphisms
on a space X is a map that takes each g € G to a homeomorphism f; of X in
such a way that fg, = fg o fr. Another way to broaden our notion of symbolic
dynamical systems is to consider actions by other discrete infinite groups in place
of Z. One of the most exciting currents in symbolic dynamics is development of
the theory of Z%actions. Elements of a Z¢ symbolic dynamical system are d-
dimensional arrays (Zn)aeze of symbols, and for each m € 7 there is a shift map
o™ that shifts all coordinates by m. Doug Lind’s chapter is a survey of these
multidimensional systems. As you will see, there are very nice results for special
class of multidimensional systems with algebraic structure, but the study of general
Z4-actions involves substantial complications not found in the one-dimensional case.

We can think of an element of a two-dimensional symbolic dynamical system
as a tiling of the plane by unit square tiles of different colors, where the colors are
simply our alphabet of symbols. A translation of the tiling by an integer vector
m gives another tiling that represents a coordinate shift of the original. To bring
the techniques of symbolic dynamics to bear on the general problem of tiling the
plane with tiles of various shapes we need to allow general translations in the plane.
In Robbie Robinson’s chapter, which examines not just planar but d-dimensional
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tilings, we will be working in the setting of R? actions by translation of Euclidean

space.
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