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Preface

This book is largely a rearrangement of a set of lectures I gave at RIMS,
Kyoto in spring 1989. The additional material is either from lectures I
atlended in that period, or arose in the process of rearrangement. The
book itself was written at Birmingham University Mathematics Department
(summer 89) and City University Mathematics Department (autumn 89
onward).

The central theme of Potts models was chosen with the aim of drawing
together, in a systematic way, some key ideas from the continuing explosion
of statistical mechanical research. The acid test of relevance to this well
established physical picture is one sure way to force a coherent direction on
the general explosion of results.

The potential drawback of writing a book on such a vital subject is that
one feels more and more pressure each week to incorporate the very latest
results. Succumbing to this pressure would obviously result in a rather
slowly converging process. In any case, most up to the minute research
turns out not, on mature reflection, to be suitable for a textbook. I there-
fore introduced a cut-off on new material after spring 1989 (except where
directly pertinent to the presentation of material already included). At
time of going into print no aspect of the subject which has matured since
then seems, by its omission, to leave a gap in the presentation.

Of course the subject will soon move on, but the fundamentals will still
be fundamental. With this in mind, another aim was to provide a handy
work of reference for my own research use, just as Baxter’s (1982) book
(with a different slant and broader but less recent perspective) has become
for so many.

I have tried to make the mathematical development as explicit as is
consistent with a finite number of pages. As a physicist I have in particular
strived to convey some of the pleasure I have found in learning and applying
algebraic techniques to physical problems... and physics is forever trying
to teach us algebra.

London, England Paul Martin



Acknowledgments

Large debts of gratitude are due to B W Westbury, T Miwa, M Jimbo,
A Kuniba, M Okado, J B Martin, A J McKane, G P McCauley, M B Green,
R A Wilson, G P Launer, M M Martin, C J B Martin and P E Woodley.
Thanks are also due to M Wadati, T Deguchi, A J Guttman, E Date, Y
Yamada, H N V Temperley and R Curtis.

vii



Contents

Preface

Acknowledgements

1 Introduction

1.1
1.2

1.3
14

1.5
1.6
1.7

On layout and objectives . . . . . . ... ... ... ... ..
Statistical mechanics . . . . . . . . ... ..o

1.2.1 Partition functions and Hamiltonians . . . . . . ..
1.2.2 Defining lattices . . . . ... ... ... .......
1.2.3 Other statistical mechanical functions . . . .. . ..
Pottsmodels . . . . . .. .. .. ... ...
Phase transitions . . . . . . . . .. ... Lo o
1.4.1 Order parameters . . . . . . . ... ... . ......
1.4.2 Critical exponents . . . .. . ... ... .......
Dichromatic polynomials . . . . . . .. .. ... .. .....
High and low temperature series . . . . .. ... ... ...
Block spin renormalisation . . . . . . ... ...
171 Fixedpoints . . . .. ... . ... ... ... ...

2 Transfer matrices

2.1

2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9

Partition vectors . . . . . . . . . . . ...
2.1.1  On internalising a common boundary . . ... ...
2.1.2 Local transfer matrices . . . . . ... ... ... ...
Algebraic formulation . . . ... ... o000
2.2.1 General local interactions . . . ... ... ... ...
2.2.2 Transfer matrix algebras . . . . . . .. ... ... ..
Automorphisms of the lattice . . . . . .. ... ... ...
Perron Frobenius theorem . . . . . . . .. ... ... ...
The freeenergy . . . . . . . . .. Lo
Correlation functions . . . . . . ... ... ... .......
Spectrum of the transfer matrix . . . . . ... ... .. ...
Pottsmodels . . . . . . ... ... ...,
Standard transfer matrices and duality . . . . . . ... ...
2.9.1 Alternative layering directions . . . . . .. ... ..

1X



Contents

2.10 Spectrum inversion transformations . . . . . .. .. ... .. 63
On commuting transfer matrices 67
3.1 Yang-Baxterequations . . . . ... .. ............ 68
3.1.1 Commuting layer transfer matrices . . . . . ... .. 69
3.2 Algebraic consequences of the relations . . . . . .. .. ... 72
321 Thebraidpoint. . .. ... ... ... ........ 72
3.2.2 Translations revisited . . . . ... ... .. ..... 75
3.3 Alternative layering directions . . . . . . . ... ... .. .. 76
3.4 The two dimensional Ising model . . . . . .. ... .. ... 77
3.4.1 Useful transfer matrix identitiesfor @ =2 . . . . . . 80
3.4.2 Applying the inversion relation . . . . . . ... ... 82
3.4.3 Reparameterised YB equation . . . . .. . ... ... 83
On exactly solved cases 89
4.1 The two dimensional Ising model . . . . . . ... ... ... 89
4.1.1 Solution by rotations . . . . .. ... ... ... ... 90
4.1.2 By translation in the layer. . . . . . .. ... .. .. 95
4.1.3 By translation in the plane . . . . ... .. .. ... 100
4.2 On conformal field theory . . . .. ... .. ... .. .... 101
Algebra: general principles 107
51 Algebras . . . . . . .. Lo o 107
5.1.1 On specifying algebras . . . . ... ... ... .. .. 108
5.1.2 Subalgebras and quotients . . . . . . ... ... ... 110
5.1.3 Linear representation theory . . . ... .. .. ... 112
5.2 Physics and theradical . . . . . .. . ... ... ... .... 114
5.3 Induction and restriction . . . . .. . ... ... 115
5.4 On the structure of algebras . . . . . . ... ... ... ... 120
54.1 Morita equivalence . . . . . ... ... L. 121
5.5 Centraliser algebras . . . .. ... ... 00000 123
56 Bialgebras . . . . ... ... 123
5.7 Algebraic overview of following chapters . . . . . ... ... 125
5.7.1 Onthebraidgroup. . .. ... ... ... ...... 127
5.7.2 Algebramorphisms . . . . . ... ... 0oL 128
Temperley-Lieb algebras: generic cases 131
6.1 Review . . . . . . .. . .. 132
6.1.1 Technicalnotes . . . . ... . ... ... ....... 133
6.2 Preliminary remarks . . . .. ... . ... ... ... .... 134
6.2.1 Two faithful diagrammatic representations . . . . . 136
6.3 Generic structure of Tx(q) . . - . . . . . . ... 140



Contents

6.3.1 Combinatorial identities . . . . . . ... .. .. ...
6.3.2 Sequencenmotation . . .. ... ... ...
6.3.3 A primitive central idempotent in Tr(¢q) . . . . . . .
6.3.4 Translation/reflection notation . . . ... ... ...
6.4 BasesforTnp(g) . . - -« o o v v i i
6.5 Usefulidentities. . . . . . . . . .. . ... ... ... ...,
6.5.1 Theword X(d,c) . . . ... .. ... ... ... ...
6.5.2 Longest words, module by module . . .. ... ...
6.5.3 The ABF regular representation . . ... ... ...

Special cases

7.1 More combinatorics and sequences . . . . . ... ... ...

7.2 Towards the main theorem . . .. ... ... ... .....
7.2.1 Indexing Tn(¢) modules . . . ... ... .......

7.3 The main theorem . . . . .. ... .. ... .. .......

7.4 Proof of main theorem . . ... ... .. ..........

Graph Temperley-Lieb algebras

8.1 Introduction. . . . . . . ... ... ...

8.2 The Potts Representation . . . .. . ... ... .. .....
8.2.1 Constructlon : s s s w v s ¢ 8 6 5 8 5 8 56 58 5 @3
8.2.2 The Potts quotient algebra . . . . ... . ... ...
8.2.3 Reducibility of the Potts representation. . . . . . . .

8.3 Partition representations . . . . . . . ... .. ...
83.1 Thebases . . ... .. ... .. ... ... ...,
8.3.2 Computationof Sp(7). . . . . ... ... ...
8.3.3 Representation type 1 . . . . ... ... .......
8.3.4 Representationtype2 . .. .. ... ... ......
8.3.5 Fixed n pregraph dependence of type 2 bases. . . . .
8.3.6 Generic irreducibility of type 2 representations. . . .
8.3.7 Quotient relations for type 2 representations.

8.4 Physical consequences. . . . . . .. ... oL L.

8.5 Quotient relations: the Potts representation . . . . . . . ..

Hecke Algebras

9.1 Review . . . . . . . . . L
9.1.1 Technicalnotes . . . . ... ... ... ... .....

9.2 On the structure of He(q) . . . . . . . . ... .. ... ...
9.2.1 A primitive central idempotent in H,(q) . . . . . . .
9.2.2 Another primitive central idempotent . . . . . . ..
9.2.3 The quotient algebras NHp(q) . . . ... ... ...
9.24 The word problem . . . . . . ... ... .......



Xii Contents

9.2.5 Sequence notation . . ... .. ... .........
93 Onbasesfor Ho(q) - - - - - o o o o oo i it i i
9.3.1 A basis for a-permutation representations . . . . . .
9.3.2 On irreducible representations . . . . . ... ... ..
9.4 The generic structure of Hnp(q) . . . . . . . .. .. .. ...
9.5 On the non-generic structure of Ho(g) . . . . . .. .. ...
9.5.1 On the structure of NHp(q) . . . . . . . . ... ...
952 OnTi(g)modules . . ... ... .. ... ......
9.5.3 The structure of 2Hi(q) . . . . . . . . . .. .. ...
9.5.4 The structure of 3Hi(q) and higher N . . . . . . ..
9.6 The defining representation of NHi(q) . . . . . ... . ...

10 Algebraic formalism for Zg symmetry

10.1 Introduction . . . . . . . . . . ... ...
10.1.1 Notation. . . . . . . . . .. .. .. ... ... ...

10.2 Zg symmetricmodels . . . . .. ... 0000000
10.2.1 Transfer matrices . . . . . . . ... ... .......
10.2.2 Simplicial Clifford algebras . . . . ... . ... ...
10.2.3 Canonical representations . . . . . ... .. ... ..

10.3 Temperley-Lieb subalgebras . . . . . . ... ... ... ...
10.3.1 Lattice gauge model representations . . ... . ...
10.3.2 Quotient relations for the gauge representation

11 The modelling of phase transitions
11.1 Zeros of the partition function . . . . . . . ... ... . ...
11.2 Semi-infinite systems . . . . . . . . . ... ... ... ...
11.3 Finite latticeresults . . . . . .. ... ... ... ......

12 Vertex models and related algebras
12.1 Homogeneous 6 vertex model . . . . . . . .. . ... . ...
12.1.1 Vertexalgebras . . . . . ... ... ... .. .....
12.1.2 Derivingamodel . . . . .. .. .. ... .. .....
12.1.3 On solving themodel . . . . ... ... .. ... ...
12.2 Asymmetric 6 vertexmodels. . . . . . ... ... ... ...
12.2.1 Inhomogeneous 6 vertexmodels. . . . . . ... ...
12.2.2 Equivalence with the Potts model . . . .. .. ...
12.3 Homogeneous Zy vertexmodels . . . .. . ... ... ...



Contents

13 Braids and cables
13.1 Introduction. . . ... ..

13.1.1 Cabling quotientsof B, . . . . ... ... ... ...
13.2 Cabling Temperley-Lieb algebras . . . . . . ... ... ...

13.2.1 The local relation .
13.2.2 Other idempotents

Bibliography

Index

xiii

323
323
325
325
331
334

337

341



Chapter 1

Introduction

Why Potts models? Why statistical mechanics?

I do not think there need be any mathematical model faithfully describing
the universe as a whole. There are, however, some very beautiful math-
ematical models for physical phenomena perceived in restricted kinematic
regimes. To me, then, a mathematical model which takes as input a de-
scription of a system at one length scale, and gives as output a description
of this system at a different scale, is particularly exciting. Equilibrium
statistical mechanics concerns models of this type.

In addition to this aesthetic consideration I note three major practical
motivations for the application of statistical mechanics. One is the common
need to determine properties of a physical system on a macroscopic scale
from an initial description of the system on a relatively small (microscopic)
but finite scale. Another is the discrete approximation of quantum field
theory, in which the microscopic scale becomes infinitessimal. The third
is the use of these physically supported pictures of statistical mechanics
to provide insight into the many glorious mathematical spin-offs from the
subject.

The Potts models are a special and easily defined class of statistical
mechanical models, as we will see. Nonetheless, they are richly structured
enough to illustrate almost every conceivable nuance of the subject. In
particular, they are at the centre of the most recent explosion of interest
generated by the confluence of conformal field theory, knot theory, quantum
groups and integrable systems.

We are fortunate that all problems in statistical mechanics seem to be
related to Potts models. Fortunate, because this means that a general
discussion of the subject can be couched in Potts model terms. These

1



2 Chapter 1. Introduction

models are invaluable in that they allow a ready understanding of their
own basic physical significance and, compared to many of their more purely
mathematically motivated counterparts, exhibit a robust insensitivity to
boundary conditions away from the critical region. Any new result can
be measured soberly against its implications for the Potts models. At the
same time they present a great challenge as the most tantalising of unsolved
models....

1.1 On layout and objectives

There exist several splendid books and reviews having some overlap of ambit
with the present work. Baxter’s (1982) book is a particularly fine example,
and we will mention many others as we go along. The material which has
been covered has been covered well, and there is no point in going over the
same ground again here. On the other hand, there is plenty of scope for
progress in the same philosophical territory, without duplicating technical
details which are already reported so lucidly. With this in mind an exhaus-
tive survey of work in the field of statistical mechanics has been omitted
in preference to one which, while self-contained, covers predominantly new
ground. The review material necessary for self-containedness has, as far
as possible, been given a novel slant. This book is not intended, then, to
be an alternative to, or review of, existing works in the field, but rather a
companion to them.

One of the striking features of recent developments in statistical mechan-
ics has been their profound interest to physicists and mathematicians alike.
Another feature has been the bewildering proliferation of solvable models
and solutions to the star-triangle relations. This Gibbsian/Boltzmannian
pulchritude has tended to defy any systematic categorisation. At present,
the physical significance of these models is not uniformly clear. However,
Jjust as mathematics has been the source of many new models, so the needs
and perspectives of physics should provide the main source of organisational
criteria.

The first theme introduced here, therefore, will be the basic physical mo-
tivation common to these models. This is reviewed in so far as it is needed
to understand and organise the models. The basic calculational techniques
involved are also introduced, and a framework for understanding and as-
sessing mathematical results in physical terms is established. The Potts
model is used as an example throughout. This theme might be generally
characterised as classical statistical mechanics for mathematicians.

Having established this foundation we then develop an algebraic frame-
work for the statistical mechanical notion of equivalence of models (a key



1.1. On Layout and Objectives 3

step in categorisation), which leads us to regard the transfer matriz as a
representative of an element of an associative algebra. It becomes natu-
ral, therefore, to characterise and classify such models by the algebra they
represent. The development of this characterisation is our second running
theme. For example, the most popular such algebra is the Temperley-
Lieb algebra, which is the algebraic embodiment of the Potts model. We
give a detailed description of this algebra, so that the reader is eventually
equipped to go out and construct arbitrary representations, and hence all
Temperley-Lieb solutions to the star-triangle relations. This theme can
perhaps be characterised as algebra for physicists.

Finally, we discuss some of the ways in which the fruit of the union of
ideas coming respectively from the mathematical and physical perspectives
may be harvested! This subject is currently the focus of a huge global
research drive. The objective here is to get us to the point where we can
join in this drive, rather than to attempt to chronicle it fully.

Table of rough interdependence of chapters

Ne
2,

7

rd

12

#

13

>

Referencing, in a work with a primarily pedagogical ambit, is often a
compromise between fastidious acknowledgement of original sources, how-



4 Chapter 1. Introduction

ever obscure, and recommendation of the clearest pedagogical exposition.
Here we will not compromise. I apologise in advance to offended parties!
The method of referencing is to give names, and dates where necessary
to avoid ambiguity, in the text. The full references are then given in the
bibliography.

Notations

In statistical mechanics the singleminded persuit of a universally standard-
ised notation has a tendency to become counter productive. It is sensible,
nonetheless, to standardise notation as far as possible. There follows a list
of standard symbols and notations. Many of them are sufficiently ubiqui-
tous in the literature as to require no explanation, others will be unfamiliar.
Anyway, here they are.

C Field of complex numbers. Unless otherwise stated we will work
over the field of complex numbers throughout;

R Real numbers;
Y/ Integers;
N,Z, Natural numbers, positive integers;
ZqQ cyclic group of order Q (i.e. additive version: elements p =

0,1,..,Q—1, composition given by addition mod Q; multiplicative
version: elements exp(27ip/Q) );

[p] integer part of p € R;

d dimension of a physical system, i.e. d € N;

14 d dimensional unit matrix;
a 0 O
diagonal(a, b, ¢) =10 & 0 };
. 0 0 ¢
[4, B] = AB — BA , commutator of matrices A4, B;
{A, B} = AB + BA , anticommutator of matrices A, B;

{Ui;i=1,.,k} a set of k objects U;, e.g. generators of an algebra;
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5 _J 1 ifa=b;

ab T 1 0 otherwise;
Vi d dimensional vector space, or specific set of basis elements;

|% vector space of indeterminate dimension, or specific set of basis
elements for Vjy;

dimV =d order of set V;

A®B tensor or direct product of matrices (or vector spaces) A and
B;

A®B direct sum of matrices (or vector spaces) A and B;

Didi A; = (14, ® A1) ® (14, ® A2) ® ..., di € N, A; matrices;

®"Va =Va@Va®Vy®...0 Vy;

Sa simple module of dimension d;

Py projective module of dimension d;

End(Vy) endomorphisms of Vy;

B = Ends(Vy) A is an algebra, V4 an A-module, then B is the al-
gebra of linear transformations on V; which commute with the
action of A;

M4(C) algebra of d-dimensional matrices over the complex numbers
N Number of particles in system;
{0} a set of variables {o;;i=1,.,N};

hom({c},V) hom-set consisiting of all functions on {c} to set V|, i.e.
hom({c}, V) ~ V¥,

{oi} a possible configuration of a set of variables o; € V, i.e. {0;} €
hom({c},V);
H Hamiltonian,;
VA Partition function;

<O0> Expectation value of observable O;

(i7) nearest neighbour pair of lattice sites, 7 and j;



