Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production

Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production

FAO FISHERIES AND AQUACULTURE TECHNICAL

547

Edited by

Melba G. Bondad-Reantaso

Aquaculture Officer

Aquaculture Service

Fisheries and Aquaculture Resources Use and Conservation Division

Fisheries and Aquaculture Department

Rome, Italy

J. Richard Arthur FAO Consultant Barriere British Columbia, Canada

and

Rohana P. Subasinghe
Senior Aquaculture Officer
Aquaculture Service
Fisheries and Aquaculture Resources Use and Conservation Division
Fisheries and Aquaculture Department
Rome, Italy

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.

ISBN 978-92-5-106975-2

All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to: copyright@fao.org or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.

Preparation of this document

Under the Aquatic Animal Health and Aquatic Biosecurity Project, and building on a number of consultations that dealt with veterinary medicines, the FAO/AAHRI Expert Workshop on Improving Biosecurity through Prudent and Responsible Use of Veterinary Medicines in Aquatic Food Production was convened in Bangkok, Thailand, from 15 to 18 December 2009, in order to understand the current status of the use of antimicrobials in aquaculture as a basis for improving biosecurity through responsible use of veterinary medicines in aquaculture production.

The project culminated in the publication of this document, which is presented in two parts. Part 1 contains 15 technical papers presented during the expert workshop and contributed by 29 specialists. Part 2 of this document contains the highlights of the expert workshop, which was participated by a total of 39 experts from some of the major aquaculture-producing countries, including experts from the Association of Southeast Asian Nations, the European Commission, the World Organisation for Animal Health and the World Health Organization, as well as experts from the private sector (producers, producer organization, and pharmaceutical and feed companies).

The expert workshop and publication, technically supervised by Dr Melba B. Reantaso, Aquaculture Officer, and Dr Rohana P. Subasinghe, Senior Aquaculture Officer, both from the Aquaculture Service, Fisheries and Aquaculture Resources Use and Conservation Division of the Food and Agriculture Organization of the United Nations (FAO) Fisheries and Aquaculture Department (FI), were made possible with financial assistance through the Programme Cooperation Agreement of Norway under B.1 and D.1 objectives administered through the FishCode Programme of FI and the Nutrition and Consumer Protection Division of the FAO Agriculture and Consumer Protection Department, respectively.

Expert Meeting on the Use of Chemicals in Aquaculture in Asia (May 1996); GESAMP Ad-Hoc Meeting of the Joint Group of Experts on the Scientific Aspects of the Marine Environmental Protection Working Group on Environmental Impacts of Coastal Aquaculture (May 1996); Workshop on International Harmonization for Aquaculture Drugs and Biologics (February 1997); Workshop and Round Table of the European Association of Fish Pathologists (EAFP) (September 1997); World Health Organization (WHO) Consultation (with FAO and the World Organisation for Animal Health, OIE) on Global Principles for the Containment of Antimicrobial Resistance in Animals Intended for Food (June 2000); First Joint FAO/OIE/WHO Expert Workshop on Nonhuman Antimicrobial Usage and Antimicrobial Resistance: Scientific Assessment (December 2003); Joint FAO/WHO Technical Workshop on Residues of Veterinary Drugs without ADI/MRL (August 2004); and Joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance (June 2006).

Abstract

The current trend towards increasing intensification and diversification of global aquaculture has led to its dramatic growth, thus making aquaculture an important food-producing sector that provides an essential source of aquatic protein for a growing human population. For both developed and developing countries, the sector is recognized as creator of jobs and an important source of foreign export earnings. The expansion of commercial aquaculture, as is the case in commercial livestock and poultry production, has necessitated the routine use of veterinary medicines to prevent and treat disease outbreaks owing to pathogens, assure healthy stocks and maximize production. The expanded and occasionally irresponsible global movements of live aquatic animals have been accompanied by the transboundary spread of a wide variety of pathogens that have sometimes caused serious damage to aquatic food productivity and resulted in serious pathogens becoming endemic in culture systems and the natural aquatic environment. The use of appropriate antimicrobial treatments is one of the most effective management responses to emergencies associated with infectious disease epizootics. However, their inappropriate use can lead to problems related to increased frequency of bacterial resistance and the potential transfer of resistance genes in bacteria from the aquatic environment to other bacteria. Injudicious use of antimicrobials has also resulted in the occurrence of their residues in aquaculture products and, as a consequence, bans by importing countries and associated economic impacts, including market loss, have occurred. As disease emergencies can happen even in well-managed aquaculture operations, careful planning on the use of antimicrobials is essential in order to maximize their efficacy and minimize the selection pressure for increased frequencies of resistant variants. The prudent and responsible use of veterinary medicines is an essential component of successful commercial aquaculture production systems.

The FAO/AAHRI Expert Workshop on Improving Biosecurity through Prudent and Responsible Use of Veterinary Medicines in Aquatic Food Production was convened in Bangkok, Thailand, from 15 to 18 December 2009, in order to understand the current status of the use of antimicrobials in aquaculture and to discuss the concerns and impacts of their irresponsible use on human health, the aquatic environment and trade. Such discussions became the basis for drafting recommendations targeted for both government and private sectors and for developing guiding principles on the responsible use of antimicrobials in aquaculture to be considered as part of future FAO Code of Conduct for Responsible Fisheries (CCRF) Technical Guidelines on Prudent and Responsible Use

of Veterinary Medicines in Aquaculture.

Because aquaculture is expected to continue to increase its contribution to the world's production of aquatic food, offer opportunities to alleviate poverty, increase employment and community development and reduce overexploitation of natural aquatic resources, appropriate guidance to aquaculture stakeholders on the responsible use of veterinary medicines has become essential. Safe and effective veterinary medicines need to be available for efficient aquaculture production, and their use should be in line with established principles on prudent use to safeguard public and animal health. The use of such medicines should be part of national and on-farm biosecurity plans and in accordance with an overall national policy for sustainable aquaculture.

This publication is presented in two parts: Part 1 contains 15 technical background papers presented during the expert workshop, contributed by 29 specialists, and which served as a basis for the expert workshop deliberations; Part 2 contains the highlights of the expert workshop.

Bondad-Reantaso, M.G., Arthur, J.R. & Subasinghe, R.P., eds. 2012.

Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production.

FAO Fisheries and Aquaculture Technical Paper. No. 547. Rome, FAO. 207 pp.

Preface

Modern aquaculture, through the intensification of culture systems and the diversification of both the species cultured and the culture methods employed, often creates an ideal environment for pathogens to flourish. The expanded and occasionally irresponsible global movements of live aquatic animals have been accompanied by the transboundary spread of a wide variety of disease agents that have sometimes caused serious damage to aquatic food productivity and resulted in serious pathogens becoming endemic in culture systems and the natural aquatic environment. Traditionally, the threats to aquaculture posed by aquatic pathogens have been addressed through the use of antimicrobials, including chemotherapeutants, disinfectants, antibiotics and vaccines. However, the inappropriate use of antimicrobials can lead to problems related to increased frequency of bacterial resistance, with negative impacts on the efficacy of these agents to control infectious diseases in aquaculture and the potential transfer of resistance genes in bacteria from the aquatic environment to other bacteria and the possibility of resistance extending to human pathogens. Injudicious use of antimicrobials has also resulted in the occurrence of their residues in aquaculture products, resulting in commodity bans by importing countries and associated economic impacts.

By themselves, antimicrobials cannot fully prevent losses due to disease. A holistic approach is required by modern aquaculture, and this can be achieved only through effective biosecurity programmes whereby pathogens are excluded from the culture environment. The Food and Agriculture Organization of the United Nations (FAO) is promoting a holistic approach to modern aquaculture through effective biosecurity actions taken at different levels ranging from more responsible international trade in aquatic organisms to better on-farm practices. The responsible use of antimicrobials is an important part of farm biosecurity, as this helps ensure that pathogen challenges are minimized, that the natural defence mechanisms of the cultured stocks are maximized, and that disease and mortality, including costs of containing, treating and/or eradicating diseases, are reduced. The injudicious and/or incorrect use of antimicrobials poses a great concern to successful and sustainable aquaculture. In order to develop appropriate strategies or guidelines that will enable the rational and prudent use of antimicrobials, particularly by small-scale aquaculturists, we need to assess the current situation with regard to the extent of their use and misuse, and to have a good general understanding of how these substances are being applied in aquaculture.

The FAO/AAHRI Expert Workshop on Improving Biosecurity through Prudent and Responsible Use of Veterinary Medicines in Aquatic Food Production was convened in Bangkok, Thailand, from 15 to 18 December 2009, in order to understand the current status of the use of antimicrobials in aquaculture and to discuss the concerns and impacts of their irresponsible use on human health, the aquatic environment and trade. Such discussions became the basis for drafting recommendations targeted for both government and private sectors and for developing guiding principles on the responsible use of antimicrobials in aquaculture to be considered as part of future FAO Technical Guidelines for Responsible Fisheries on Prudent and Responsible Use of Veterinary Medicines in Aquaculture.

Árni Mathiesen Assistant Director-General FAO Fisheries and Aquaculture Department

Acknowledgements

This publication was an outcome of the contributions of the many individuals who participated in this project, beginning with the desk study, through to the expert workshop, and then to the final publication of this document. They are all gratefully acknowledged.

Many kind thanks are due to the officials of the Inland Aquatic Animal Health Research Institute (AAHRI), Department of Fisheries of Thailand, and the FAO Regional Office for Asia and the Pacific for gracing the opening and closing sessions, and to AAHRI staff for logistic arrangements. Special thanks also go to the various companies, institutions and organizations (Bayer-Thailand, the Association of Southeast Asian Nations, the European Commission, Intervet/Schering-Plough Animal Health, Skretting-Spain, Surerath Farms-Thailand, Thai Aquaculture Business Association, the World Health Organization, the World Organisation for Animal Health, United States Food and Drug Administration) that provided support for the participation of experts. The authors of contributed papers and all workshop participants are sincerely acknowledged for making this publication possible.

The editors would like to thank officials of the Fisheries and Aquaculture Department (FI) – J. Jia, I. Karunasagar and W. Miao for support, guidance and encouragement and E. Irde for the organization and conduct of the expert workshop and contribution to this publication. The kind assistance of T. Farmer, M. Guyonnet and M. Panzironi, also of FI, and S. Arthur (desktop publisher) for various types of assistance during the final production of this document is much appreciated.

Contributors

Victoria Alday-Sanz

Gran Via 658,4-1 Barcelona 08010

Spain

Puttharat Baoprasertkul

Inland Aquatic Animal Health Research Institute Department of Fisheries Kasetsart University Campus Chatujak, Bangkok, 10900

Thailand

Alexandre Boetner

Intervet/Schering-Plough Animal Health

24-26 Gold Street
Saffron Walden, Essex
United Kingdom CB10 2NE

Melba G. Bondad-Reantaso

Food and Agriculture Organization of the

United Nations

Viale Terme di Caracalla

00153, Rome

Italy

Visanu Boonyawiwat

Faculty of Veterinary Medicine

Kasetsart University

Kamphangesaen Nakornpathom 73140

Thailand

Sandra S. Bravo

Universidad Austral de Chile Los Pinos s/n, Balneario Pelluco

Puerto Montt

Chile

Lucie Dutil

Laboratory of Foodborne Zoonoses

Public Health Agency of Canada

Guelph, Ontario Canada N1G 5B2

Elena Irde

Food and Agriculture Organization of the

United Nations

Viale Terme di Caracalla

00153, Rome

Italy

Roar Gudding

National Veterinary Institute

PO Box 750 Sentrum

0105 Oslo Norway

Iddya Karunasagar

Food and Agriculture Organization of the

United Nations

Viale Terme di Caracalla

00153, Rome

Italy

Indrani Karunasagar

Department of Microbiology

College of Fisheries Mangalore 575 002

India

Brett Koonse

Center for Veterinary Medicine

United States Food and Drug Administration

7500 Standish Place, HFV-131

Rockville, MD 20855 United States of America

Mai Van Tai

Centre for Environment and Disease Monitoring in Aquaculture (CEDMA) Research Institute for Aquaculture No. 1

(RIA 1)

Dinh Bang, Tu Son, Bac Ninh

Viet Nam

Jennifer Matysczak

Center for Veterinary Medicine

United States Food and Drug Administration

7500 Standish Place, HFV-131

Rockville, MD 20855 United States of America

Scott McEwen

Department of Population Medicine

University of Guelph

Guelph, Ontario N1G 2W1

Canada

Donald Prater

Center for Veterinary Medicine

United States Food and Drug Administration

7500 Standish Place, HFV-131

Rockville, MD 20855 United States of America Andrijana Rajić

Department of Population Medicine

University of Guelph

Guelph, Ontario N1G 2W1

Canada and

Laboratory of Foodborne Zoonoses Public Health Agency of Canada

Guelph, Ontario N1G 5B2

Canada

Peter Smith

Department of Microbiology National University of Ireland

Galway Ireland

Richard Reid-Smith

Laboratory of Foodborne Zoonoses, Public

Health Agency of Canada Guelph, Ontario N1G 5B2

Canada

Simeona E. Regidor

Bureau of Fisheries and Aquatic Resources 860 Arcadia Bldg., Quezon Avenue, Quezon

City Philippines

Joselito R. Somga

Bureau of Fisheries and Aquatic Resources 860 Arcadia Bldg., Quezon Avenue, Quezon

City Philippines

Sonia Somga

Bureau of Fisheries and Aquatic Resources

860 Arcadia Bldg., Quezon Avenue, Quezon

City Philippines

Temdoung Somsiri

Aquatic Animal Health Research Section Inland Aquatic Animal Health Research

Institute

Department of Fisheries Kasetsart University Campus Chatujak, Bangkok 10900

Thailand

Nataša Tuševljak

Department of Population Medicine

University of Guelph

Guelph, Ontario N1G 2W1

Canada and

Laboratory of Foodborne Zoonoses
Public Health Agency of Canada

Guelph, Ontario N1G 5B2

Canada

Carl Uhland

Université de Montréal

3200 rue Sicotte

St-Hyacinthe, Québec

Canada

Robin Wardle

Intervet/Schering-Plough Animal Health

24-26 Gold Street, Saffron Walden, Essex CB10

2NE

United Kingdom

Chen Wen

Guangdong Provincial Aquatic Animal

Epidemic Disease Prevention and Control

Center

#10, Nancun Road

Guangzhou, Guangdong 510222

China

Xinhua Yuan

Freshwater Fisheries Research Center

Chinese Academy of Fishery Sciences

No. 9, West Shanshui Road Wuxi, Jiangsu 214081

China

Carlos Zarza

Skretting Spain

Crta. de la Estación, s/n. 09620

Cojobar, Burgos

Spain

Abbreviations and acronyms

AAHP aquatic animal health practitioner

AAHRI Aquatic Animal Health Research Institute

ADI acceptable daily intake
AHD 1-aminohydantoin

AMDUCA Animal Medicinal Drug Use Clarification Act (United States of America)

AMOZ 3-amino-5-morpholinomethyl-1,3-oxazolidin

AMR antimicrobial resistance AMU antimicrobial use

AO Administrative Order (Philippines)

AOZ 3-amino-oxazolidinone

BAI Bureau of Animal Industry (Philippines BFAD Bureau of Food and Drugs (Philippines)

BFAR Bureau of Fisheries and Aquatic Resources (Philippines)

BKD bacterial kidney disease

BMP best management practice; better management practice

BW body weight

CAC Codex Alimentarius Commission

CCRVDF Codex Committee on Residues of Veterinary Drugs in Foods

CEDMA Centre for Environment and Disease Monitoring in Aquaculture (Viet Nam)

CLSI Clinical and Laboratory Standards Institute

CNY Chinese yuan

CoC Conduct of Conduct for Responsible Aquaculture Farming

CO_{WT} wild type cut-off value

DA Department of Agriculture (the Philippines)
DAH Department of Animal Health (Viet Nam)

DG SANCO Directorate General for Health and Consumer Affairs

DOA Department of Aquaculture (Viet Nam)
DOF Department of Fisheries (Thailand)
DOH Department of Health (the Philippines)

DOSTE Department of Science, Technology and Environment (Viet Nam)

EMB Emamectin benzoate

ELISA enzyme-linked immunosorbent assay

EU European Union

EUCAST European Committee on Antimicrobial Susceptibility Testing FAO Food and Agriculture Organization of the United Nations

FDA Food and Drug Administration (Thailand)

FDA-CVM Food and Drug Administration's Center for Veterinary Medicine

(United States of America)

FDA-DOH
FOOd and Drug Administration-Department of Health (Philippines)
FFDCA
FIQAS
Fish Inspection and Quality Assurance Service (Philippines)

FOO Fisheries Office Order (the Philippines)
FSANZ Food Standards Australia New Zealand

FVO Food and Veterinary Office GAqPs good aquaculture practices GFI Guidance for Industry

GMO General Memorandum Order (Philippines)

GMO genetically modified organism

GMP good management practice; good manufacture practice

HMP health management programme

HACCP Hazard Analysis and Critical Control Point

H₂O₂ hydrogen peroxide

IGO intergovernmental organization IPN infectious pancreatic necrosis ISA infectious salmon anaemia

JECFA Joint FAO/WHO Expert Committee on Food Additives

LCMSMS liquid chromatography tandem mass spectrometry

LMG luecomalachite green

MARD Ministry of Agriculture and Rural Development (Viet Nam)

MIC minimum inhibitory concentration MOFI Ministry of Fisheries (Viet Nam)

MRL maximum residue level MRL maximum residue limit

MRPL minimum required performance limit

NACA Network of Aquaculture Centres in Asia and the Pacific NARMS National Antimicrobial Resistance Monitoring System

NGO non-governmental organization
NOAEL no-observed adverse effect level
NRI normalized resistance interpretation

NWT non-wild type

OIE World Organisation for Animal Health

PD pharmacodynamics
PHP Philippine peso
PK pharmacokinetics
ppb parts per billion
ppm parts per million
OC quality control

RAHO Regional Animal Health Office (Viet Nam)

RA Republic Act (Philippines)

RIA 1 Research Institute for Aquaculture No. I (Viet Nam)

SAG Agriculture and Livestock Service (Chile)

SEM semicarbazide

SERNAPESCA National Fisheries Service (Chile)

SFR specific feeding ratio
SPF specific pathogen free
SPIC Single Plate Internal Control

SPS Agreement Sanitary and Phytosanitary Agreement of the World Trade Organisation

SRS salmon rickettsial syndrome

SUBPESCA Undersecretariat of Fisheries (Chile)
USDA United States Department of Agriculture

VHML V. harveyi myovirus-like

VICH International Cooperation on Harmonisation of Technical Requirements

for Registration of Veterinary Medicinal Products

VNN viral nervous necrosis
WHO World Health Organization
WSSV whitespot syndrome virus

WT wild type

WTO World Trade Organization

Contents

Р	reparation of this document	ii
	bstract	i۱
	reface	vi
	cknowledgements	vii
	ontributors	i)
A	bbreviations and acronyms	XII
P	ART 1 – CONTRIBUTED PAPERS ON UNDERSTANDING THE USE OF VETERINARY MEDICINES IN AQUACULTURE	
	J	
	Public health and trade impact of antimicrobial use in aquaculture	1
	Iddya Karunasagar	
	Environmental impacts and management of veterinary medicines in aquaculture: the case of salmon aquaculture in Chile Sandra Bravo	11
	Salidia Biavo	
	Good aquaculture practices to minimize bacterial resistance	25
	Brett Koonse	
	Survey on the use of veterinary medicines in aquaculture	29
	Victoria Alday-Sanz, Flavio Corsin, Elena Irde and Melba G. Bondad-Reantaso	
	Antimicrobial use and resistance in selected zoonotic bacteria in aquaculture: preliminary findings of a survey of aquaculture-allied professionals	45
	Nataša Tuševljak, Andrijana Rajii \acute{c} , Lucie Dutil, F. Carl Uhland, Richard Reid-Smith and Scott McEwen	
	Use of veterinary medicines in Chinese aquaculture: current status Yuan Xinhua and Chen Wen	51
	Use of veterinary medicines in Philippine aquaculture: current status	69
	Sonia S. Somga, Joselito R. Somga and Simeona E. Regidor	
	Use of veterinary medicines in Thai aquaculture: current status	83
	Puttharat Baoprasertkul, Temdoung Somsiri and Visanu Boonyawiwat	
	Use of veterinary medicines in Vietnamese aquaculture: current status Mai Van Tai	91
	Antimicrobial resistance: complexities and difficulties of determination Peter Smith	99

	Legislation and regulatory efforts in the United States of America relevant to the use of antimicrobials in aquaculture	119
	Jennifer Matysczak and Donald A. Prater	
	Oral delivery of veterinary medicines through aquafeed in Mediterranean aquaculture Carlos Zarza	127
	Disease prevention as a basis for sustainable aquaculture Roar Gudding	141
	Health management tools from a manufacturer's point of view Robin Wardle and Alexandre Boetner	147
	Alternatives to antibiotics in aquaculture Indrani Karunasagar	155
P	PART 2 – REPORT OF THE FAO/AAHRI EXPERT WORKSHOP ON IMPROVING BIOSECURITY THROUGH PRUDENT AND RESPONSIBLE USE OF VETERINARY MEDICINES IN AQUATIC FOOD PRODUCTION, BANGKOK, THAILAND, 15-18 DECEMBER 2009	
	BACKGROUND	167
	Purpose	169
	Participation	169
	Process	169
	TECHNICAL WORKSHOP	169
	WORKING GROUP FINDINGS	177
	WGRKSHOP CONCLUSIONS AND RECOMMENDATIONS	184
	ANNEXES	
	1 Experts and expert profiles	185
	2 Expert workshop programme	201
	3 Expert workshop group photo	203
	GLOSSARY	205

Public health and trade impact of antimicrobial use in aquaculture

Iddya Karunasagar

Products, Trade and Marketing Service
Fisheries and Aquaculture Department
Food and Agriculture Organization of the United Nations
Viale delle Terme di Caracalla
00153 Rome, Italy
Iddya.Karunasagar@fao.org

Karunasagar, I. 2012. Public health and trade impact of antimicrobial use in aquaculture. In M.G. Bondad-Reantaso, J.R. Arthur & R.P. Subasinghe, eds. Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production, pp. 1–9. FAO Fisheries and Aquaculture Technical Paper No. 547. Rome, FAO. 207 pp.

ABSTRACT

Detection of residues of certain banned antibiotics in fish and crustaceans in international trade during 2001–2002 led to greater attention on the public health risks owing to the use of antimicrobial agents in aquaculture. The risk of residues with respect to antimicrobials that are permitted for use in aquaculture is managed by enforcing a maximum residue limit (MRL), but there are very few antimicrobials for which MRLs have been established by international agencies. Most fish importing countries adopt a zero tolerance approach regarding residues of antimicrobials that are banned for use in food animals. In such cases, residue levels that attract regulatory action are based on analytical capability rather than toxicology of the residues. Development and spread of antibiotic resistance has been a cause of concern, although this issue is complicated by possible multiple origins of resistance traits found in aquatic bacteria. Work done in this area by international agencies such as the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the World Health Organization and the Codex Alimentarius Commission is reviewed in this paper.

INTRODUCTION

The importance of antimicrobial agents in protection of animal health has been widely acknowledged, but the negative impacts of the use of these agents in animals raised for food have been a cause of concern. The Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO) and the World Organisation for Animal Health (OIE) have organized several expert consultations and technical meetings to review the global situation and develop recommendations. While the issue of selection and spread of antibiotic-resistant bacteria in aquaculture has been deliberated upon for quite some time, the issue of antimicrobial residues in aquaculture products came to the fore in 2001 following marked improvements in laboratory methods to detect residues. This was followed by disruptions of trade in aquaculture products. According to the World Trade Organisation's Sanitary and Phytosanitary Agreement (SPS Agreement), countries have the right to establish measures to protect the life and health of their population and also to determine the level of protection that is appropriate for the country; however, available scientific evidence should be used when