ORGANOMETALLIC REACTIONS

Edited by

Ernest I. Becker Minoru Tsutsui

VOLUME

ORGANOMETALLIC REACTIONS

Volume 3

EDITED BY

Ernest I. Becker

Department of Chemistry University of Massachusetts Boston, Massachusetts

Minoru Tsutsui

Department of Chemistry Texas A & M University College Station, Texas

Wiley-Interscience

A Division of John Wiley & Sons, Inc.

NEW YORK . LONDON . SYDNEY . TORONTO

Copyright © 1972, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Library of Congress Catalogue Card Number: 74-92108

ISBN 0-471-06136-0

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

ORGANOMETALLIC REACTIONS

Volume 3

ADVISORY BOARD

G. E. COATES, PROFESSOR OF CHEMISTRY

Chairman, Department of Chemistry University of Wyoming Laramie, Wyoming 82070

H. GILMAN, PROFESSOR

Department of Chemistry Iowa State University Ames, Iowa 50010

F. HEIN, Professor

Director, Institute of Coordination Compounds Academy of Sciences of DDR Jena, East Germany

A. N. NESMEYANOV

Institute for Elementoorganic Compounds Moscow, U.S.S.R.

G. WITTIG, PROFESSOR

Department of Chemistry University of Heidelberg Heidelberg, W. Germany

Preface

The primary literature on organometallic chemistry has undergone phenomenal growth. The number of papers published from 1955 to 1970 is about equal to all prior literature. Together with this intense activity there has developed a complexity in the literature. Thus specialized texts and teaching texts, a review journal, an advances series, and a research journal have all appeared during this period. The present series also reflects this growth and recognizes that many categories of organometallic compounds now have numerous representatives in the literature.

The purpose of Organometallic Reactions is to provide complete chapters on selected categories of organometallic compounds, describing the methods by which they have been synthesized and the reactions they undergo. The emphasis is on the preparative aspects, although structures of compounds and mechanisms of reactions are briefly discussed and referenced. Tables of all of the compounds prepared in the category under consideration and detailed directions for specific types make these chapters particularly helpful to the preparative chemist. While the specific directions have not been refereed in the same way as are those in Organic Syntheses and Inorganic Syntheses, the personal experiences of the authors often lend special merit to the procedures and enable the reader to avoid many of the pitfalls frequently encountered in selecting an experimental procedure from the literature.

We acknowledge a debt of gratitude to the contributing authors whose dedication and skill in preparing the manuscripts cannot adequately be rewarded. It has been gratifying to note that virtually all invitations to contribute have been accepted at once. We also owe thanks to the publisher for encouragement and even the "gentle prod" when necessary to see these volumes to their completion.

Ernest I. Becker Minoru Tsutsui Editors

September 1970

Contents for Volume 1

REDISTRIBUTION REACTIONS OF ORGANOALUMINUM COMPOUNDS

By T. Mole, C.S.I.R.O. Chemical Research Laboratories, Melbourne, Australia

CHEMICAL FIXATION OF MOLECULAR NITROGEN

By M. E. Vol'Pin and V. B. Shur, Institute of Organoelemento Compounds, Academy of Sciences of U.S.S.R., Moscow, U.S.S.R.

REACTION OF ORGANOMERCURY COMPOUNDS, PART 1 By L. G. Makarova, Institute of Organoelemento Compounds, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

Author Index

Subject Index

Contents for Volume 2

THE REDISTRIBUTION REACTION

By Kurt Moedritzer, Central Research Department, Monsanto Company, St. Louis, Missouri

REACTIONS OF ORGANOTELLURIUM COMPOUNDS

By J. Irgolic and Ralph A. Zingaro, Department of Chemistry, Texas A & M University, College Station, Texas

REACTIONS OF ORGANOMERCURY COMPOUNDS, PART 2

L. G. Makarova, Institute of Organoelemento Compounds, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

Author Index

Subject Index

Contents

OLEFIN OXIDATION AND RELATED REACTIONS WITH GROUP VIII NOBLE METAL COMPOUNDS	
By Reinhard Jira and Werner Freiesleben, Consortium für	
Elektrochemische Industrie GMBH, Munich, Germany	11
CLEAVAGE REACTIONS OF THE CARBON-SILICON BOND	
By VÁCLAV CHVALOVSKÝ, Institute of Chemical Process Funda-	
mentals, Czechoslovak Academy of Science, Prague, Czecho-	
slovakia	191
OXYMETALATION	
BY WILLIAM KITCHING, Department of Chemistry, University of	
Queensland, Brisbane, Queensland, Australia	319
Subject Index	401

Olefin Oxidation and Related Reactions with Group VIII Noble Metal Compounds

REINHARD JIRA AND WERNER FREIESLEBEN

Consortium für elektrochemische Industrie GmbH, Munich, Germany

I.	Int	roduction				•					5
II.	Bo	nds and Structures of π -Complexes									6
III.	Ox	idation of Olefins with PdCl ₂	•								10
	A.	Aqueous Medium				•					10
		1. Kinetics and Mechanism				•					10
		2. Influences on Reaction Rate .				•					27
		3. Addition of Oxidants				1.0					27
		4. Noble Metal Compounds Other 7	Γhar	Po							33
		5. Reactions of Various Olefinic Con	mpo	unc	ls						34
		6. Aldehyde-Ketone Ratio									44
	B.	Nonaqueous Media								1.0	44
		1. Mechanism and Kinetics								•	44
		2. Reactions with Carboxylic Acids	and	Ca	rbo	xyla	ates				52
		rain and the same				100					62
		4. Reactions with Other Nucleophile	es								63
		5. Stereochemistry									67
	C.	Heterogeneous Reactions									68
		Allylic Oxidation									69
											70
		2. Allylic Oxidation in Aqueous Me									71
		3. Allylic Oxidation in Nonaqueous								Ċ	73
		4. Reactions of π -Allyl Complexes							i		74
		a. Reactions with Water					•	•	•	•	74
		b. Reactions with Other Nucleop					•	•	•	•	75
		c. Thermal Decomposition of π -2							•	•	75
		d. Further Reactions of π -Allyl P			-				•		79
		5. Formation of π -Allyl Complexes			-				•		80
		6. Reactions of Allyl Halides with P									83
	E	Oxidative Coupling				ucc	us	1410	aru	111	84
	⊷.	1 Reactions with Englate Carbania				•	•	•	•	•	94 94

			_
		2. Oxidative Coupling of Olefinic and Aromatic Compounds	85
			101
	F.	Oxidative Degradation of Olefins by PdCl ₂ Forming Carbonyl	
			104
IV.		1	105
	A.	The second control of	105
			105
			106
		,	117
	B.		117
		1. Dimerization of Olefins	117
		2. Mechanisms	118
			121
		4. Polymerization	131
	C.	Isomerization of Olefinic Compounds	133
			133
		2. Double Bond Migration	147
			148
V.	Co		149
			150
		Reactions of Olefinic Compounds with Aqueous Solutions of	
		Noble Metal Salts in the Absence of Additional Oxidants	150
			150
		2. Conversion of Liquid Material	150
			150
		*	151
			151
			151
			151
			152
	В.		152
			152
			152
			153
			153
	C		153
	C.		153
		2. Preparation of Vinyl Acetate from Ethylene with PdCl ₂ and	133
		- · · · · · · · · · · · · · · · · · · ·	154
		3. Preparation of Vinyl Acetate from Ethylene and Oxygen in	1)4
			154
		4 Preparation of Vinyl Acetate	154 154
		5. Formation of Glycol Diacetate and p-Unioroethyl Acetate	154

	OLEFIN OXIDATION AND RELATED REACTIONS	3
	6. Preparation of Glycol Monoacetate	155
	7. Preparation of Hexenyl Acetates (Examples for the Conver-	
	sion of Higher Olefins)	155
	a. Conversion of 1-Hexene in the Absence of Copper(II).	155
	b. Conversion of 1-Hexene in the Presence of Copper(II).	156
	8. Preparation of Benzyl Acetate	156
	a. Reaction in Solution.	156
	b. Heterogeneous Catalytic Reaction	157
	9. Preparation of Glycolaldehyde Triacetate from Vinyl	157
	Chloride	157
D.	Oxidation of Olefins in Alcoholic Medium	157
٠.	1. Preparation of Acetaldehyde Diethylacetal	157
	2. Preparation of 2-Methyl-1,3-dioxolane from Ethylene	158
	3. Preparation of 2-Cyanomethyl-1,3-dioxolane from Acrylo-	100
	nitrile	158
E.	Oxidative Reactions with Other Nucleophiles	158
	1. Preparation of Acrylonitrile	158
	2. Preparation of Allyl Chloride	158
F	Oxidative Formation of C—C Bonds	159
* *	1. Preparation of 1,4-Diacetoxybutadiene from Vinyl Acetate	159
	 Preparation of 2,5-Diphenyl-2,4-hexadiene from α-Methyl- 	10)
	styrene	159
	3. Preparation of <i>trans,trans</i> -1,4-Diphenyl-1,3-butadiene from	10)
	β -Bromostyrene	159
	4. Preparation of Biphenyl from Benzene	160
	5. Preparation of <i>trans</i> -Stilbene from Styrene and Benzene .	160
G.	Oxidative Coupling of Olefins with Carbanions Derived from	100
٠.	Organomercury Compounds	160
	1. General Procedure for Alkylation or Arylation of Olefins	100
	with Organomercury, -lead, and -tin Compounds	160
	2. Preparation of Cinnamyl Acetate from Allyl Acetate	161
	3. Preparation of Methyl Cinnamate from Methyl Acrylate in	101
	the Presence of PdCl ₂ , CuCl ₂ , and Oxygen	161
	4. Preparation of 2-Phenylethyl Chloride from Ethylene	161
	5. Preparation of 3-Phenyl-2-chloropropionaldehyde	162
	6. Preparation of 3-Phenylpropionaldehyde	162
	7. Preparation of Phenylacetaldehyde	163
	8. Coupling of Toluene with PdCl ₂ through an Organo-	105
	mercury Intermediate	163
Н	σ-Complexes of Palladium(II) and Platinum(II).	163
	General Procedure for Oxymetallation of Cyclic Dienes	163
I.	Formation and Reactions of π -Allyl Complexes	164
	1. Reaction of PdCl ₂ with Allyl Alcohol. Formation of 4-	101

REINHARD JIRA AND WERNER FREIESLEBEN

Methylene tetrahydrofurfuryl Alcohol and 4-Methyl-2,5-	
	64
dihydrofurfuryl Alcohol	
Halides	64
3. Formation of Bis(π-allyl PdCl) Complexes from Olefins 10	64
4. Formation of Bis(π -allyl PdCl) Complexes from Olefins in	
the Presence of Na ₂ CO ₃	65
5. Hydrolytic Decomposition of Bis(π-allyl PdCl) Complexes. 10	6:
6. Oxidation of Bis(π-allyl PdCl) Complexes	6:
J. Catalytic Transalkenylation	6:
1. General Procedure for the Preparation of Vinyl and Iso-	
propenyl Esters from the Acetates	6:
2. Preparation of Vinyl Acetate from Vinyl Chloride 10	66
3. Preparation of Divinyl Adipate	66
4. Preparation of Vinyl Fluoride from Vinyl Chloride 10	66
5. Preparation of Vinyl Methyl Ether from Vinyl Acetate 10	66
6. Preparation of Acetaldehyde Diethylacetal from Vinyl	
Acetate	6
7. Preparation of Allyl Ethyl Ether from Allyl Chloride 10	6
8. Preparation of 2-Phenylpropionaldehyde and 1,2-Di-	
phenyl-1-propene	6
9. Preparation of Benzyl Methyl Ketone 10	68
10. Preparation of 1-Phenyl-2-butene, 2-Phenyl-2-butene and	
	68
1-Phenyl-1-butene	68
K. Oligomerization and Polymerization	69
1. Preparation of Butenes from Ethylene	69
2. Dimerization of Ethylene with Rhodium Chloride Catalyst 10	69
3. Dimerization of Butadiene in an Aprotic Solvent to Octa-	
1,3,7-triene	69
4. Dimerization of Butadiene in Methanol 1	7(
5. Dimerization and Trimerization of Norbornadiene with	
Rhodium on Carbon 1	7(
6. Dimerization of Acrylonitrile	7(
7. Dimerization of Acrylamide	7(
	7]
9. Polymerization of Butadiene by Rhodium Chloride 1'	7]
10. Polymerization of Hydroxymethylnorbornene with Palla-	
dium Chloride 1	71
L. Isomerization of Olefinic Compounds	71
1. General Procedure	71
References	72

I. INTRODUCTION

In 1959 the Consortium für elektrochemische Industrie GmbH*³⁴² presented a new process for the commercial production of acetaldehyde from ethylene by direct oxidation. This new process not only filled a gap in the availability of basic organic intermediates from petrochemical resources but also, by its intricate catalysis, stimulated elementary investigations in organometallic chemistry.

The reaction between ethylene and oxygen to yield acetaldehyde is effected by an aqueous solution of palladium chloride and cupric chloride, which brought to memory a reaction described by Phillips in 1894:²⁹⁵

$$C_2H_4 + PdCl_2 + H_2O \longrightarrow CH_3CHO + Pd + 2HCl$$
 (1)

At this time Phillips studied the behavior of various hydrocarbons toward oxidizing agents. He observed a black precipitate of palladium metal when he passed ethylene into an aqueous solution of palladium chloride. The olefin was oxidized to acetaldehyde. Evidently, the stoichiometric reaction of a noble metal salt with a scarce olefin found little commercial interest. Phillips' reaction was suggested for analytical application or for the separation of palladium from other noble metals.²⁷⁶

Only the discovery that catalytic quantities of palladium salt could be successfully employed for oxidation reactions in the presence of a suitable oxidant (which prevents the precipitation of the palladium metal) turned broad attention to palladium chemistry and reactions of other noble metals. A variety of new specific reactions performed with PdCl₂ was elaborated: the oxidation of olefinic to carbonyl compounds in aqueous or nonaqueous solutions; the allylic oxidation of olefins; oxidative coupling; as well as a great many specific catalytic reactions without the accompanying oxidation, e.g., hydrolysis of substituted olefins, transvinylation, carbonylations, oligomerization, isomerization, etc.

All of these reactions proceed through organometallic intermediates. In most cases the initial step is formation of a π -complex of an olefin with a noble metal atom. Such complexes have been known since 1831 when Zeise ⁴²¹ described a compound KCl·PtCl₂·C₂H₄, the "sal Kalico Platinicus inflammabilis," which he had obtained by treating a boiling alcoholic solution of hexachloroplatinic acid with potassium chloride. Zeise's salt remained a dubious academic curiosity rather than an inspiring event. It took nearly a century to turn the attention of researchers to such compounds. The first palladium-olefin complex was described in 1938 by Kharasch et al.¹⁹⁰ With the impulse of commercial success, extensive research flared up in this field. The engagement grew worldwide after Moiseev and co-workers ²⁵⁰ had reported a synthesis of vinyl acetate from ethylene in acetic acid solution with PdCl₂.

^{*} Research organization of Wacker-Chemie GmbH, Munich, Germany.

Within a few years a multitude of publications appeared on new reactions with palladium or other noble metal salts; on new complexes, e.g., π -allyl-palladium compounds; ³⁴⁰ or on kinetics and mechanisms. These compounds will be critically reviewed in the following chapters.*

II. BONDS AND STRUCTURES OF π -COMPLEXES

Bonds and structures of π -complexes have been extensively described in summarizing publications, e.g., 21,22,99,100,116,124,130 We confine ourselves in this paper to a presentation of the model generally accepted for metal-olefin complexes. It has been shaped by Dewar ⁸⁵ for silver-olefin compounds and was applied by Chatt and Duncanson ⁴⁷ for the interpretation of platinum-olefin complexes. We use the same model for describing palladium-olefin complexes and their behavior, as well as olefin complexes of other metals of the platinum group. According to this model the olefin should be bonded to the metal by the concerted action of two types of bonds: a σ -type which is brought about by the overlapping of the π -orbital of the olefin with a 5d 6s $6p^2$ hybrid orbital of the platinum and a π -type by the overlapping of a filled 5d orbital of the metal with the antibonding orbitals of the olefin. Since the electron donor property of the olefin prevails, its carbon atoms carry a partial positive charge. See Fig. 1.

In Zeise's salt the ethylene is symmetrically bonded to the platinum atom, its C—C axis being oriented perpendicular to the plane of the four-coordinated planar complex. The plane of the hydrogen atoms lies parallel to the cis-Cl-Z-plane, but the hydrogen atoms are repelled away from the metal behind the olefinic carbon atoms which, therefore, adopt a partial sp³ character. Nevertheless, the C—C double bond remains almost unchanged.

Coordination of the olefin only causes a lengthening of the C—C distance. This could be demonstrated by the lowering of the C—C stretching frequency for about 100 wave numbers.⁴⁷ Infrared spectroscopic reinvestigation of Zeise's salt—including far infrared, to determine the metal-olefin bond strength—has been published recently.^{127,302} For spectroscopic data on $[Pt(C_2H_4)Cl_2]_2$ and its deuterio- and palladium-analogues, see Ref. 128. The structure outlined above was essentially confirmed by a crystal structure determination of $K(PtCl_3C_2H_4) \cdot H_2O$.⁴¹⁴ The distances between the platinum atom and the *cis*-chloro atoms are both the same (2.32 Å); only the distance between the platinum atom and the chlorine atom in *trans* position to the olefin was found to be slightly longer (2.42 Å). This lengthening is attributed to the "*trans* effect" of the olefin.^{15,116}

^{*} Patent literature is cited only where examples that have not been published elsewhere are given. But no warranty shall be deduced or construed from the literature cited for priorities.

Fig. 1. Orbitals used in the combination of ethylene with platinum. Spatial arrangement of atoms in $C_2H_4PtCl_3^-$. σ -Type bond; π -type bond.

The olefin need not be rigidly fixed to the metal atom, since for rhodium 62,67a and platinum 30 olefin complexes there is evidence of a rotation of the olefin about its coordination axis with an activation energy of 15 kcal for $[(C_2H_4)_2Rh(C_5H_5)]$. 67a An analogous structure was determined by Dempsey and Baenziger 83 by X-ray analysis of the binuclear chloro-bridged ethylene palladium chloride complex prepared by Kharasch et al. 190 In this complex the axes of the ethylene molecules are also perpendicular to the plane of the Pd_2Cl_2 system with the planes intersecting in the centers of the ethylenic double bonds.

Substituted ethylenes are asymmetrically bonded to the central metal in analogous complexes. This was found for the corresponding binuclear

styrene palladium chloride complex by Holden and Baenziger. ¹⁵⁷ The carbon atoms of the aromatic ring of the complexed styrene are out of plane, whereas free styrene has a planar structure. The C—C axis of the ethylenic group is tipped away from the plane of the chloro-bridges, its bond being off-center and shifted to the terminal carbon atom. Angles and distances can be seen in Fig. 2.

Fig. 2. Detailed sketch of the styrene-palladium chloride complex. The large atoms are chlorine; the medium-size atoms are palladium; and the smallest are the carbon atoms C_1 , C_7 , and C_8 of styrene.

The prototype of π -allyl complexes of palladium [C₃H₅PdCl]₂ was first described by Smidt and Hafner.³⁴⁰ The allylic anion is bonded to the palladium atom as a bidentate ligand by two delocalized electron pairs and symmetrically oriented to the (PdCl)₂ bridge. Therefore, they occupy two square planar coordination sites. This proposal for a "sandwich-type" bond and structure was confirmed by nuclear magnetic resonance (NMR) studies ⁸² and by X-ray analysis.^{272,321,351} According to Oberhansli and Dahl,²⁷² the plane of the three allylic carbon atoms is declined by an angle of 108° to

Fig. 3. The molecular configuration of $(C_3H_5)PdCl_2$, intramolecular distances and angles by Smith.

the Pd₂Cl₂-bridge system with the central carbon atom tipped away from the palladium. The five hydrogen atoms are coplanar with the allylic plane.³⁵¹ Bond angles and distances are shown in Fig. 3.

The allylic carbon atoms are equidistant to the palladium atom; 351 the Pd—Cl distances agree fairly with the trans-Pd—Cl bonds in olefin palladium complexes. This lengthening of the Pd—Cl bonds in $[\pi$ -allyl PdCl] $_2$ leads to the assumption that beyond a σ -type bond formed by the overlap of the two π -hybrid orbitals of the allylic ligand with unoccupied square planar dsp^2 orbitals of the metal atom, other π -type back bondings—similar to the ones proposed for olefin complexes—are present. The nature of the bonding in π -allyl complexes of transition metal ions was discussed using bonding energy data. 189

Allylic groups in mononuclear complexes of platinum group metals with different ligands that can be obtained, e.g., from bis(π -allyl PdCl) complexes by reactions with *tert*-phosphines or arsines are bound unsymmetrically. From NMR spectra three different conformational rearrangements have been discussed: 402,405