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-I Text Overview

This text is designed for the usual introductory physics courses to prepare un-
dergraduate students for the level of mathematics expected in more advanced
undergraduate physics and engineering courses. One of it's goals is to guide
the student in learning the mathematical language physicists use by leading
them through worked examples and then practicing problems. The pedagogy
is that of introducing concepts, designing and refining methods, and practicing
them repeatedly in physics examples and problems. Geometric and algebraic
approaches and methods are included and are more or less emphasized in
a variety of settings to accommodate different learning styles of students.
Sometimes examples are solved in more than one way. Theorems are usually
derived sketching the underlying ideas and describing the relevant mathemat-

_ical relations so that one can recognize the assumptions they are based on and

their limitations. These proofs are not rigorous in the sense of the professional
mathematician, and no attempt was made to formulate theorems in their most
general form or under the least restrictive assumptions.

An important objective of this text is to train the student to formulate
physical phenomena in mathematical language, starting from intuitive and
qualitative ideas. The examples in the text have been worked out so as to
develop the mathematical treatment along with the physicalintuition. A precise
mathematical formulation of physical phenomena and problems is always the
ultimate goal.

In Chapter 1 the basic concepts of vector algebra and vector analysis are in-
troduced and applied to classical mechanics and electrodynamics. Chapter
2 deals with the extension of vector algebra and analysis to curved orthogo-
nal coordinates, again with applications from classical mechanics and elec-
trodynamics. These chapters lay the foundations for differential equations in
Chapters 8, 9, and 16; variational calculus in Chapter 18; and nonlinear analy-
sis in Chapter 19. Chapter 3 extends high school algebra of one or two linear

XixX



XX Preface

equations to determinants and matrix solutions of general systems of linear
equations, eigenvalues and eigenvectors, and linear transformations in real
and complex vector spaces. These chapters are extended to function spaces
of solutions of differential equations in Chapter 9, thereby laying the math-
ematical foundations for and formulation of quantum mechanics. Chapter 4
on group theory is an introduction to the important concept of symmetry in
modern physics. Chapter 5 gives a fairly extensive treatment of series that
form the basis for the special functions discussed in Chapters 10-13 and also
complex functions discussed in Chapters 6 and 7. Chapter 17 on probability
and statistics is basic for the experimentally oriented physicist. Some of its
content can be studied immediately after completion of Chapters 1 and 2, but
later sections are based on Chapters 8 and 10. Chapter 19 on nonlinear methods
can be studied immediately after completion of Chapter 8, and it complements
and extends Chapter 8 in many directions. Chapters 10-13 on special functions
contain many examples of physics problems requiring solutions of differen-

tial equations that can also be incorporated in Chapters 8 and 16. Chapters 14
and 15 on Fourier analysis are indispensible for a more advanced treatment of
partial differential equations in Chapter 16. .

Historical remarks are included that detail some physicists and mathemati-
cians who introduced the ideas and methods that later generations perfected
to the tools we now use routinely. We hope they provide motivation for stu-
dents and generate some appreciation of the effort, devotion, and courage of
past and present scientists.

. Pathways through the Material

Because the text contains more than enough material for a two-semester un-
dergraduate course, the instructor may select topics to suit the particular level
of the class. Chapters 1-3 and 5-8 provide a basis for a one-semester course in
mathematical physics. By omitting some topics, such as symmetries and group
theory and tensors; it is possible in a one-semester course to also include parts
of Chapters 10-13 on special functions, Chapters 14 and 15 on Fourier analysis,
Chapter 17 on probability and statistics, Chapter 18 on variational calculus, or
Chapter 19 on nonlinear methods.

Atwo-semester course can treat tensors and symmetries in Chapters 2 and 4
and special functions in Chapters 10-13 more extensively, as well as variational
calculus in Chapter 18 in support of classical and quantum mechanics.

-I Problem-Solving Skills

Students should study the text until they are sure they understand the physi-
cal interpretation, can derive equations with the book closed, can make pre-
dictions in special cases, and can recognize the limits of applicability of the
theories and equations of physics. However, physics and engineering courses
routinely demand an even higher level of understanding involving active learn-
ing in which students can apply the material to solve problems because it is
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common knowledge that we only learn the mathematical language that physi-
cists use by repeatedly solving problems.

The problem sets at the end of sections and chapters are arranged in the or-
der in which the material is covered in the text. A sufficient variety and level of
difficulty of problems are provided to ensure that anyone who conscientiously
solves them has mastered the material in the text beyond mere understanding
of step-by-step derivations. More difficult problems that require some mod-
ification of routine methods are also included in various sets to engage the
creative powers of the student, a skill that is expected of the professional
physicist.

-I Computer Software

Problems in the text that can be solved analytically can also be solved by mod-
ern symbolic computer software, such as Macsyma, Mathcad, Maples, Mathe-
matica, and Reduce, because these programs include the routine methods of
mathematical physics texts. Once the student has developed an analytical re-
sult, these powerful programs are useful for checking and plotting the results.
Finding an analytical solution by computer without understanding how it is
derived is pointless. When computers are used too early for Solving a problem,
many instructors have found that students can be led astray by the computers.
The available computer software is so diverse as to preclude any detailed dis-
cussion of it. Each instructor willing to make use of computers in the course
will have to make a choice of a particular software and provide an introduc-
tion for the students. Many problems and examples in the text may then be
-adapted to it. However, their real utility and power lie in the graphics software
they include and the ability to solve problems approximately and numerically
that do not allow for an analytical solution. Special training is needed, and the
text can be used to train students in approximation methods, such as series
and asymptotic expansions, or integral representations that are suitable for
further symbolic computer manipulations.
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