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HYDRODYNAMICS OF PUMPS

Hydrodynamics of Pumps is a reference for pump experts and a textbook for
advanced students exploring pumps and pump design. This book is about
the fluid dynamics of liquid turbomachines, particularly pumps. It focuses
on special problems and design issues associated with the flow of liquid
through a rotating machine. There are two characteristics of a liquid that
lead to problems and cause a significantly different set of concerns from
those in gas turbines. These are the potential for cavitation and the high den-
sity of liquids, which enhances the possibility of damaging, unsteady flows
and forces. The book begins with an introduction to the subject, includ-
ing cavitation, unsteady flows, and turbomachinery as well as basic pump
design and performance principles. Chapter topics include flow features,
cavitation parameters and inception, bubble dynamics, cavitation effects on
pump performance, and unsteady flows and vibration in pumps — discussed
in the three final chapters. The book is richly illustrated and includes many
practical examples.

Christopher E. Brennen is Professor of Mechanical Engineering in the
Faculty of Engineering and Applied Science at the California Institute of
Technology. He has published more than 200 refereed articles and is espe-
cially well known for his research on cavitation and turbomachinery flows,
as well as multiphase flows. He is the author of Fundamentals of Multi-
phase Flows and Cavitation and Bubble Dynamics and has edited several
Othf_ﬂ: “works.



Preface

This book is intended as a combination of a reference for pump experts and a mono-
graph for advanced students interested in some of the basic problems associated with
pumps. It is dedicated to my friend and colleague Allan Acosta, with whom it has
been my pleasure and privilege to work for many years.

But this book has other roots as well. It began as a series of notes prepared for
a short course presented by Concepts NREC and presided over by another valued
colleague, David Japikse. Another friend, Yoshi Tsujimoto, read early versions of the
manuscript and made many valuable suggestions.

It was a privilege to have worked on turbomachinery problems with a group of tal-
ented students at the California Institute of Technology, including Sheung-Lip Ng,
David Braisted, Javier Del Valle, Greg Hoffman, Curtis Meissner, Edmund Lo,
Belgacem Jery, Dimitri Chamieh, Douglas Adkins, Norbert Arndt, Ronald Franz,
Mike Karyeaclis, Rusty Miskovish, Abhijit Bhattacharyya, Adiel Guinzburg, and
Joseph Sivo. I recognize the many contributions they made to this book.

In the first edition, I wrote that this work would not have been possible without the
encouragement, love, and companionship of my beloved wife Doreen. Since then fate
has taken her from me and I dedicate this edition to our daughters, Dana and Kathy,
whose support has been invaluable to me.

Christopher E. Brennen
California Institute of Technology
January 2010
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Introduction

1.1 Subject

The subject of this monograph is the fluid dynamics of liquid turbomachines,
particularly pumps. Rather than attempt a general treatise on turbomachines, we shall
focus attention on those special problems and design issues associated with the flow of
liquid through a rotating machine. There are two characteristics of a liquid that lead to
these special problems, and cause a significantly different set of concerns than would
occur in, say, a gas turbine. These are the potential for cavitation and the high density
of liquids that enhances the possibility of damaging unsteady flows and forces.

1.2 Cavitation

The word cavitation refers to the formation of vapor bubbles in regions of low pressure
within the flow field of a liquid. In some respects, cavitation is similar to boiling,
except that the latter is generally considered to occur as a result of an increase of
temperature rather than a decrease of pressure. This difference in the direction of the
state change in the phase diagram is more significant than might, at first sight, be
imagined. It is virtually impossible to cause any rapid uniform change in temperature
throughout a finite volume of liquid. Rather, temperature change most often occurs
by heat transfer through a solid boundary. Hence, the details of the boiling process
generally embrace the detailed interaction of vapor bubbles with a solid surface, and
the thermal boundary layer on that surface. On the other hand, a rapid, uniform change
in pressure in a liquid is commonplace and, therefore, the details of the cavitation
process may differ considerably from those that occur in boiling. Much more detail
on the process of cavitation is included in later sections.

It is sufficient at this juncture to observe that cavitation is generally a malevolent
process, and that the deleterious consequences can be divided into three categories.
First, cavitation can cause damage to the material surfaces close to the area where the
bubbles collapse when they are convected into regions of higher pressure. Cavitation
damage can be very expensive, and very difficult to eliminate. For most designers



2 Introduction

of hydraulic machinery, it is the preeminent problem associated with cavitation.
Frequently, one begins with the objective of eliminating cavitation completely. How-
ever, there are many circumstances in which this proves to be impossible, and the effort
must be redirected into minimizing the adverse consequences of the phenomenon.

The second adverse effect of cavitation is that the performance of the pump, or
other hydraulic device, may be significantly degraded. In the case of pumps, there is
generally a level of inlet pressure at which the performance will decline dramatically,
a phenomenon termed cavitation breakdown. This adverse effect has naturally given
rise to changes in the design of a pump so as to minimize the degradation of the
performance; or, to put it another way, to optimize the performance in the presence
of cavitation. One such design modification is the addition of a cavitating inducer
upstream of the inlet to a centrifugal or mixed flow pump impeller. Another example
is manifest in the blade profiles used for supercavitating propellers. These supercavi-
tating hydrofoil sections have a sharp leading edge, and are shaped like curved wedges
with a thick, blunt trailing edge.

The third adverse effect of cavitation is less well known, and is a consequence of
the fact that cavitation affects not only the steady state fluid flow, but also the unsteady
or dynamic response of the flow. This change in the dynamic performance leads to
instabilities in the flow that do not occur in the absence of cavitation. Examples of these
instabilities are “rotating cavitation,” which is somewhat similar to the phenomenon
of rotating stall in a compressor, and “auto-oscillation,” which is somewhat similar
to compressor surge. These instabilities can give rise to oscillating flow rates and
pressures that can threaten the structural integrity of the pump or its inlet or discharge
ducts. While a complete classification of the various types of unsteady flow arising
from cavitation has yet to be constructed, we can, nevertheless, identify a number of
specific types of instability, and these are reviewed in later chapters of this monograph.

1.3 Unsteady Flows

While it is true that cavitation introduces a special set of fluid-structure interaction
issues, it is also true that there are many such unsteady flow problems which can arise
even in the absence of cavitation. One reason these issues may be more critical in
a liquid turbomachine is that the large density of a liquid implies much larger fluid
dynamic forces. Typically, fluid dynamic forces scale like p2> D* where p is the fluid
density, and Q and D are the typical frequency of rotation and the typical length,
such as the span or chord of the impeller blades or the diameter of the impeller. These
forces are applied to blades whose typical thickness is denoted by z. It follows that
the typical structural stresses in the blades are given by pQ2D*/7?%, and, to minimize
structural problems, this quantity will have an upper bound which will depend on
the material. Clearly this limit will be more stringent when the density of the fluid
is larger. In many pumps and liquid turbines it requires thicker blades (larger t) than
would be advisable from a purely hydrodynamic point of view.
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This monograph presents a number of different unsteady flow problems that are
of concern in the design of hydraulic pumps and turbines. For example, when a rotor
blade passes through the wake of a stator blade (or vice versa), it will encounter an
unsteady load which is endemic to all turbomachines. Recent investigations of these
loads will be reviewed. This rotor-stator interaction problem is an example of a local
unsteady flow phenomenon. There also exist global unsteady flow problems, such as
the auto-oscillation problem mentioned earlier. Other global unsteady flow problems
are caused by the fluid-induced radial loads on an impeller due to flow asymmetries, or
the fluid-induced rotordynamic loads that may increase or decrease the critical whirling
speeds of the shaft system. These last issues have only recently been addressed from
a fundamental research perspective, and a summary of the conclusions is included in
this monograph.

1.4 Trends in Hydraulic Turbomachinery

Though the constraints on a turbomachine design are as varied as the almost innu-
merable applications, there are a number of ubiquitous trends which allow us to draw
some fairly general conclusions. To do so we make use of the affinity laws that are
a consequence of dimensional analysis, and relate performance characteristics to the
density of the fluid, p, the typical rotational speed, €2, and the typical diameter, D,
of the pump. Thus the volume flow rate through the pump, Q, the total head rise
across the pump, H, the torque, 7', and the power absorbed by the pump, P, will scale
according to

0 xQD’ (1.1)
H x Q> D? (1.2)
T x pD>Q? (1.3)
P x pD°Q? (1.4)

These simple relations allow basic scaling predictions and initial design estimates.
Furthermore, they permit consideration of optimal characteristics, such as the power
density which, according to the above, should scale like p D*$23.

One typical consideration arising out of the affinity laws relates to optimizing the
design of a pump for a particular power level, P, and a particular fluid, p. This fixes the
value of D> Q?. If one wished to make the pump as small as possible (small D) to reduce
weight (as is critical in the rocket engine context) or to reduce cost, this would dictate
not only a higher rotational speed, €2, but also a higher impeller tip speed, QD /2.
However, as we shall see in the next chapter, the propensity for cavitation increases
as a parameter called the cavitation number decreases, and the cavitation number
is inversely proportional to the square of the tip speed or 22D?/4. Consequently,
the increase in tip speed suggested above could lead to a cavitation problem. Often,



