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Preface

There have been many significant advances in polyamine research since the
field was brought to the forefront of biological and biomedical research in
the 1970s. Many of the significant findings since that time, whether in plant
research, cell biology, the development of therapeutics, genetics or another
related field, have been aided by the availability of synthetic compounds
specifically designed to inhibit enzymes in the polyamine pathway or other-
wise disrupt polyamine metabolism. For example, a search of PubMed using
the terms difluoromethylornithine AND dfmo AND eflornithine produces
1179 references dating to 1980, and including research in diverse areas such
as plant biochemistry, cancer cell biology, parasitology, insect biochemistry,
synthetic chemistry, drug development and human clinical trials. Despite the
diversity of fields of endeavor within polyamine research and the significant
impact of modulators of polyamine metabolism, a book dedicated to the
discovery and development of synthetic compounds targeting polyamine
metabolism as drugs has never been produced. The purpose of this book is
to fill that void by presenting an overview of drug-discovery research within
the polyamine field.

The impetus for a significant portion of polyamine research has been pro-
vided by the availability of synthetic analogs that produce defined effects on
polyamine metabolism in vitro and in vivo. This book begins with a chapter that
outlines the synthetic approaches to these analogs, covering areas such as
nucleotide synthesis and synthetic routes used to access various polyamine
analogs. The structural biology aspects of polyamine drug discovery are
detailed, as are efforts to design and discover specific inhibitors of enzymes in
the polyamine pathway. Chapters are also included that address the role of
polyamine analogs as antiparasitic agents, antineoplastic agents and epigenetic
modulators. In addition, the important role played by polyamine oxidation is
detailed. Other important areas within polyamine drug discovery research, such
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vi Preface

as polyamine transport, the development of polyamine-metal complexes as
antitumor agents and the design of polyamine-based gene transfer reagents, are
discussed. Finally, a chapter is included that describes the promising results
from recent human clinical trials involving drugs targeting polyamine meta-
bolism. The result is a broad overview of polyamine drug discovery and the
translation of new chemical entities from basic chemistry to studies involving
patients.

Those of us who have a long history in polyamine drug discovery research
know that it is a cyclic endeavor, with drug discovery successes appearing
periodically and clinical successes appearing steadily but infrequently. How-
ever, recent clinical research with existing compounds, including DFMO and
the bis(ethyl)polyamine analogs PG-11093 and PG-11144, bode well for the
future. In particular, DFMO has found utility as a chemopreventative agent
in combination with sulindac, and the bis(ethyl)polyamines have produced
promising results in combination antitumor studies. Not since the advent of
DFMO has the field of polyamine drug discovery research been so close to
bringing a drug to market. We hope that after perusing this book, the reader
will have gained an appreciation for polyamine drug discovery efforts that are
occurring on multiple fronts. We also hope that you will share the confidence
inherent in modern polyamine researchers that significant successes in poly-
amine drug discovery are on the horizon.

Patrick M. Woster
Robert A. Casero, Jr
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CHAPTER 1

Polyamine Drug Discovery:
Synthetic Approaches to
Therapeutic Modulators of
Polyamine Metabolism

PATRICK M. WOSTER*

Department of Pharmaceutical and Biomedical Sciences, Medical University
of South Carolina, 70 President St., Charleston, SC 29425, USA

1.1 Introduction

In the following chapters, a complete description of the design, bioevaluation
and development of modulators of polyamine metabolism is presented. There
are numerous synthetic approaches to these inhibitors, and as such a com-
prehensive review of the chemical literature in this area is beyond the scope of
this book. In this chapter, specific examples of synthetic approaches to
nucleosides, analogs of the natural polyamines and other agents that affect
polyamine metabolism are described. The reader should bear in mind that the
literature is replete with alternative strategies for the synthesis of compounds
described herein. However, the examples provided will allow the reader to
appreciate the vast chemical diversity that is available to medicinal chemists
working in the polyamine field.
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2 Chapter 1
1.2 Polyamine Metabolism as a Drug Target

The mammalian polyamine biosynthetic pathway is shown in Figure [0
Ornithine is converted to putrescine by the action of the enzyme ornithine
decarboxylase (ODC). Mammalian ODC, a dimeric enzyme with a molecular
weight of about 80000, is a typical pyridoxal phosphate-requiring amino acid
decarboxylase that has been studied quite extensively.” ODC is known to be one
of the control points in the polyamine biosynthetic pathway, producing a pro-
duct that is committed to polyamine biosynthesis. The synthesis and degrada-
tion of ODC are controlled by a number of factors including degradation
assisted by a specific ODC antizyme, a polyamine-induced protein that binds to
ODC and promotes ubiquitin-independent degradation by the 26S proteasome.*
As a result, ODC has a functional half-life of about 10 min. Putrescine is next
converted to spermidine via an aminopropyltransferase known as spermidine
synthase, which requires decarboxylated S-adenosylmethionine as a co-
substrate.> A second closely related but distinct aminopropyltransferase, sper-
mine synthase, then adds an additional aminopropyl group to spermidine to
yield spermine, the longest polyamine occurring in mammalian systems.’ The
by-product for the spermidine and spermine synthase reactions is 5’-methyl-
thioadenosine (MTA), a potent product inhibitor for the aminopropyl transfer
process.® In mammalian systems, MTA is rapidly hydrolyzed by the enzyme
MTA-phosphorylase, and the components are converted to adenosine and
methionine via salvage pathways.” The aminopropyl donor for both amino-
propyltransferases is decarboxylated S-adenosylmethionine (dc-AdoMet),
produced from S-adenosylmethionine (AdoMet) by S-adenosylmethionine
decarboxylase (AdoMet-DC).* AdoMet-DC, like ODC, is a highly regulated
enzyme in mammalian cells, and also serves as a regulatory point in the path-
way. However, unlike ODC, AdoMet-DC belongs to a class of pyruvoyl
enzymes that do not require pyridoxal phosphate as a cofactor (see below).’”
Polyamine metabolism is tightly controlled by a combination of inducible
enzymes and the import/export of cellular polyamines. In addition to the
enzymes mentioned above, intracellular polyamine content is modulated by a
pair of acetyltransferases. Spermidine in the cell nucleus is acetylated on the four-
carbon end by spermidine-/N8-acetyltransferase, possibly altering the com-
pound’s binding affinity for DNA.'®!" A specific deacetylase can then reverse
this enzymatic acetylation. Cytoplasmic spermidine and spermine serve as sub-
strates for spermidine/spermine-N'-acetyltransferase (SSAT), resulting in acet-
ylation on the three-carbon end of each molecule (Figure 1.1).>!'? The acetylated
spermidine or spermine then acts as a substrate for acetylpolyamine oxidase
(APAO),"? which catalyzes the formation of 3-acetamidopropionaldehyde and
either putrescine or spermidine, respectively. Excess acetylated polyamines can
also be exported from the cell via the polyamine transport system.'* More
recently, a second polyamine oxidase, the inducible spermine oxidase (SMO) was
discovered and characterized.'>'® Thus, SSAT, APAO and SMO together serve
as a reverse route for the interconversion of polyamines. An additional
mechanism for control of cellular polyamines is provided by the polyamine
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Figure 1.1 Mammalian polyamine metabolic pathway.

transport system, which has been well characterized in some organisms (bacteria,
yeast), but has not been well characterized in mammalian organisms.'” The
function of enzymes in polyamine metabolism and the polyamine transport
system, and the consequences of modulating their activity, are described in more
detail elsewhere in this book.

1.3 Synthetic Approaches to Modulators of Polyamine
Metabolism and Function
1.3.1 Ornithine Decarboxylase (ODC)

Mammalian ODC is a highly unstable protein, and cellular levels of ODC
depend on rates of synthesis and degradation as outlined above. For this
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reason, reversible and irreversible inhibitors of ODC have proven to be of
limited value, since the synthesis of new protein occurs very rapidly in response
to reduced polyamine levels in the cell. The catalytic mechanism of ODC
involves the formation of a Schiff’s base between the amino group of ornithine
and the pyridoxal phosphate cofactor which is tightly bound to ODC. The most
useful inhibitor of ODC to date, a-difluoromethylornithine (DFMO, 1, Scheme
1.1), takes advantage of this aspect of the mechanism, and belongs to a group of
rationally designed mechanism-based inactivators specifically targeted to
individual amino acid decarboxylases. The chemical synthesis of DFMO is
shown in Scheme 1.1.'® The (bis)benzylidene-protected amino ester 2 is treated
with lithium diisopropylamide (LDA) followed by exposure to 1-chloro-2,2-
difluoroethane to form the alkylated product 3. Removal of the benzylidene
protecting groups and cleavage of the methyl ester are accomplished simulta-
neously to afford DFMO 1 in a 60% overall yield. It is noteworthy that the
pathway shown in Scheme 1.1 is not used at the industrial scale, and the large-
scale production of DFMO is an expensive undertaking. Thus, until recently,
the drug has been produced almost exclusively in sufficient quantities for
inclusion in commercial preparations such as the the lifestyle drug Vaniga®™.
Although DFMO is available commercially in small quantities for research, the
cost is prohibitive.

H\ COOM LDA S s
e N
. /\/\ﬁ‘
/\/Y sl CHFZ
Ho_N . Ho_N
" % T\CI g é

6.0 MHCI
COOMe
H2N/\/\ﬁn
CHF,

NH,
1

Scheme 1.1 Synthesis of 2,2-difluoromethylornithine (DFMO, 1).

The mechanism of inactivation of ODC by DFMO is shown in Scheme 1.2.
As a substrate analog, DFMO forms a Schiff’s base with the pyridoxal phos-
phate cofactor bound to ODC. The subsequent decarboxylation step results in
the generation of a latent electrophile, and ODC is rapidly and irreversibly
deactivated by forming a covalent bond with CYSs4.'” The discovery of
DFMO provided an enormous stimulus to the field of mammalian polyamine
biology. Historically, DFMO has been marketed as a treatment for Pneumo-
cystis carinii secondary infections in immunocompromised patients,” and has
been shown to be effective in curing infections of Trypanosoma brucei gam-
biense (but not T. brucei rhodesiense) in limited clinical trials.?’>*



