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Preface

Nonnegative and compartmental dynamical system models are derived from
mass and energy balance considerations that involve dynamic states whose
alues are nonnegative. These models are widespread in biology, chemistry,
ecology, economics, genetics, medicine, sociology, and engineering, and play
a key role in the understanding of these disciplines. Specifically, since such
disciplines give rise to systems that have numerous input, state, and output
properties related to conservation, dissipation, and transport of mass and
energy, nonnegative and compartmental models are conceptually simple yet
remarkably effective in describing the essential phenomenological features
of these dynamical systems. Furthermore. since such systems are governed
by conservation laws (e.g., mass, energy, fluid, etc.) and are comprised of
homogeneous compartments which exchange variable nonnegative quantities
of material via intercompartmental flow laws, these systems are completely
analogous to network thermodynamic (advection-diffusion) systems with
compartmental masses or energies playing the role of heat and temperatures.

Compartmental models have been widely used in biology, pharmacology,
and physiology to describe the distribution of a substance (e.g., biomass,
drug, radioactive tracer, etc.) among different tissues of an organism. In
this case, a compartment represents the amount of the substance inside
a particular tissue and the intercompartmental flows are due to diffusion
processes. In engineering and the physical sciences, compartments typically
represent the energy, mass, or information content of the different parts
of the system, and different compartments interact by exchanging heat,
work energy, and matter. In ecology and economics, compartments can
represent soil and debris, or finished goods and raw materials in different
regions, and the flows are due to energy and nutrient exchange (e.g.. nitrates.
phosphates, carbon, etc.), or money and securities. Compartmental systems
can also be used to model chemical reaction systems. In this case, the
compartments would represent quantities of different chemical substances
contained within the compartment, and the compartmental flows would
characterize transformation rates of reactants to products.

In this monograph., we develop a unified stability and dissipativity
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(i.e.. conservation, dissipation. and transport) analysis and control design
framework for nonnegative and compartmental dynamical systems in order
to foster the understanding of these systems as well as advancing the state
of the art in active control of nonnegative and compartmental systems. This
general framework is then applied to the fields of thermal sciences, biology,
chemistry. and medicine to provide a dynamical systems perspective of these
diverse disciplines. The monograph is written from a system-theoretic point
of view and can be viewed as a contribution to dynamical system and control
system theory.

After a brief introduction to nonnegative and compartmental dynam-
ical systems in Chapter 1, fundamental stability theory for lincar and
nonlinear nonnegative and compartmental dynamical systems is developed
in Chapter 2. In Chapter 3. we extend the results of Chapter 2 to
address nonnegative and compartmental systems with time delay. Chapter 4
provides necessary and sufficient conditions for identifying nonnegative
and compartmental systems that admit nonoscillatory and monotonic
solutions. A detailed treatment of dissipativity theory and stability of
feedback interconnections of nonnegative dynamical systems is given in
Chapter 5, whereas extensions of these results to impulsive nonnegative
systems are given in Chapter 6. In Chapters 7 and 8 we use compartmental
dynamical system theory to provide a system-theoretic foundation for
thermodynamics. A detailed treatment of mass-action kinetics is given
in Chapter 9. while Chapters 10 and 11 provide extensions to general
compartmental models with directed and undirected intercompartmental
flows, time delays, and model uncertainty.  Next, in Chapters 12-16 we
develop a control design framework for nonnegative and compartmental
dynamical systems with application to drug dosing control for clinical
pharmacology. In Chapter 17. we use compartmental dynamical system
theory and Poincaré maps to model. analyze, and control the dynamics of a
pressure-limited respirator and lung mechanics system. Chapter 18 develops
a constrained optimization framework for nonnegative and compartmental
system identification. Finally. in Chapter 19 we present conclusions.

The first author would like to thank James M. Bailey for his valuable
discussions on pharmacokinetic and pharmacodynamic modeling in clinical
pharmacology over the recent vears. In addition. the authors thank
Paul Katinas for several insightful and enlightening discussions on the
statements quoted in ancient Greek on page vii.  In some parts of the
monograph we have relied on work we have done jointly with Elias August,
James M. Bailey, Dennis S. Bernstein, Sanjay PP. Bhat, Behnood Gholami.
Tomohisa Hayakawa. Hancao Li, Sergey G. Nersesov, Tanmay Rajpurohit.
Jayanthy Ramakrishnan, and Kostyantyn Y. Volvanskyy: it is a pleasure to
acknowledge their contributions.

The aphorisms by Herakleitos. Empedocles. and Pyvthagoras quoted in
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the epigraph of the book give the earliest perception of the complexity of
nature and universe. For example, biology has shown that many species of
animals such as insect swarms, ungulate flocks, fish schools, ant colonies, and
bacterial colonies self-organize in nature. These biological aggregations give
rise to remarkably complex global behaviors from simple local interactions
between a large number of relatively unintelligent agents without the need
for a centralized architecture. The spontancous development (i.c.. self-
organization) of these autonomous biological systems and their spatio-
temporal evolution to more complex states often appears without any
external system interaction. In other words, structural morphing into
coherent groups is internal to the system and results from local interactions
among subsystem components that are independent of the physical nature
of the individual components. These local interactions often comprise a
simple set of rules that lead to remarkably complex and robust behaviors.
Complexity here refers to the quality of a system wherein interacting
subsystems self-organize to form hierarchical evolving structures exhibiting
emergent system properties, whereas robustness refers to insensitivity of
individual subsystem failures and unplanned behavior at the individual
subsystem level. The connection between the local subsystem interactions
and the globally complex system behavior is often elusive. This is true for
nature in general and was most eloquently stated first by the ancient Greek
philosopher Herakleitos in his 123rd fragment— Nature loves to hide ($lowc
xpunTecUon (UAEL).

Herakleitos” profound second statement — All matter is exchanged for
energy, and energy for all matter (ITupdc te avtapopn ta ndvta xol nip
andviwyv)-—is a statement of the law of conservation of mass-energy and is
a precursor to the principle of relativity. In describing the nature of the
universe Herakleitos postulates that nothing can be created out of nothing,
and nothing that disappears ceases to exist. This totality of forms, or mass-
energy equivalence, is eternal and unchangeable in a constantly changing
universe (ta tduta pet). Herakleitos™ last statement defines ultimate wisdom
as knowledge and understanding of the intelligence which steers all things
through all things. In the language of modern science. this statement defines
ultimate wisdom as a fundamental understanding of the universal laws that
egovern all things and all forces in the universe.

Like Herakleitos™ second statement, Empedocles’ statement is one of
totality of forms in nature. He postulates that there is no genesis
with regard to any of the things in nature but rather a blending and
alteration of elements (otowyeia) through attractive and repulsive forces.
He further postulates that the organic universe originated from spontancous
aggregations involving pattern interactions by which life emerged through
autopoiesis (self-creation). Pythagoras’™ statement attempting to explain
our incomprehensible universe is as trenchant today as it was two and a half
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millennia ago. with parts of his statement resonating with creationists, evo-
lution theorists, and intelligent designers. However, Pythagoras spoke of one
god. and of God in many forms, and he did so without contradiction. And
with God elicited as the universal forces (strong nuclear. electromagnetic,
weak nuclear. and gravitational). his statement belongs to the scientist.

The results reported in this monograph were obtained at the School of
Aerospace Engineering. Georgia Institute of Technology, Atlanta, and the
Department of Mechanical, Aerospace, and Biomedical Engineering of the
University of Tennessee. Knoxville. between June 2000 and May 2008. The
research support provided by the Air Force Office of Scientific Research and
the National Science Foundation over the years has been instrumental in
allowing us to explore basic research topics that have led to some of the
material in this monograph. We are indebted to them for their support.

Atlanta, Georgia, USA, July 2009, Wassimn M. Haddad
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Chapter One

Introduction

With the ever-increasing influence of mathematical modeling and engineer-
ing on biological, social, and medical sciences, it is not surprising that
dynamical system theory has played a central role in the understanding of
many biological, ecological, and physiological processes [155, 171, 172, 235].
With this confluence it has rapidly become apparent that mathematical
modeling and dynamical system theory are the key threads that tie together
these diverse disciplines.  The dynamical models of many biological,
pharmacological, and physiological processes such as pharmacokinetics
[19,287], metabolic systems [50], epidemic dynamics [155, 157], biochemical
reactions [57,171], endocrine systems [50], and lipoprotein kinetics [171] are
derived from mass and energy balance considerations that involve dynamic
states whose values are nonnegative. Hence, it follows from physical
considerations that the state trajectory of such systems remains in the
nonnegative orthant of the state space for nonnegative initial conditions.
Such systems are commonly referred to as nonnegative dynamical systems'
in the literature [79, 164, 166, 233].

A subclass of nonnegative dynamical systems are compartmental
systems [4,5,29,43,88,100, 134,152, 155158, 162, 165, 188, 198, 208,209, 211,
219,220, 232,252, 258,259, 300]. Compartmental systems involve dynamical
models that are characterized by conservation laws (e.g., mass, energy,
fluid. etc.) capturing the exchange of material between coupled macroscopic
subsystems known as compartments. FEach compartment is assumed to be
kinetically homogencous, that is, any material entering the compartment
is instantancously mixed with the material of the compartment. The
range of applications of nonnegative systems and compartmental systems
is not limited to biological, social, and medical systems. Their usage
includes chemical reaction systems [25. 60, 82, 187, 298], queuing systems
[301], large-scale systems [274,275], stochastic systems (whose state variables

'Some anthors erroncously refer to nonnegative dynamical systems as positive systems.
However, since the state of a nonnegative system can evolve in the nonnegative (closed) orthant of
the state space. which is a proper cone (i.e.. a closed. convex, solid, and pointed cone), and is not
necessarily constrained to the positive (open) orthant of the state space, nonnegative dynamical
systems is the appropriate expression for the description of such systems.
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represent probabilities) [301], ecological systems [38, 141, 181, 211, 231],
economic systems [21], demographic systems [155], telecommunications
systems [90], transportation systems, power systems, heat transfer systems.
thermodynamic systems [116], and structural vibration systems [175 177],
to cite but a few examples.

In economic systems the interaction of raw materials, finished goods,
and financial resources can be modeled by compartments representing
various interacting sectors in a dynamic economy. Similarly, network
systems, computer networks, and telecommunications systems are all
amenable to compartmental modeling with intercompartmental flow laws
governed by nodal dynamics and rerouting strategies that can be controlled
to minimize waiting times and optimize system throughput. Compartmental
models can also be used to model the interconnecting components of power
grid systems with energy flow between regional distribution points subject
to control and possible failure. Road, rail, air, and space transport systems
also give rise to compartmental systems with interconnections subject to
failure and real-time modification.

Since the aforementioned dynamical systems have numerous input,
state, and output properties related to conservation, dissipation, and
transport of mass, energy, or information, nonnegative and compartmental
models are conceptually simple yet remarkably effective in describing the es-
sential phenomenological features of these dynamical systems. Furthermore,
since such systems are governed by conservation laws and are comprised of
homogeneous compartments which exchange variable nonnegative quantities
of material via intercompartmental flow laws, these systems are completely
analogous to network thermodynamic (advection-diffusion) systems with
compartmental masses, energies, or information playing the role of heat
and temperatures.

The goal of the present monograph is directed toward developing
a general stability? analysis and control design framework for nonlinear
nonnegative and compartmental dynamical systems. However, as in general
nonlinear systems, nonlinear nonnegative dynamical systems can exhibit
a very rich dynamical behavior, such as multiple equilibria, limit cycles,
bifurcations, jump resonance phenomena, and chaos, which can make
general nonlinear nonnegative system analysis and control notoriously
difficult. In addition, since nonnegative and compartmental dynamical
systems have specialized structures, nonlinear nonnegative system stabi-
lization has received very little attention in the literature and remains

2Unlike standard stability theory. stability notions for nonnegative dynamical systems need to
be defined with respect to relatively open subsets of the nonnegative orthant of the state space
containing the system equilibrivun point. See Definition 2.3.



INTRODUCTION 3

relatively undeveloped. For example, biological and physiological systems
typically possess a multiechelon hierarchical hybrid structure characterized
by continuous-time dynamics at the lower levels of the hierarchy and
discrete-time dynamics (logical decision-making units) at the higher levels of
the hierarchy. This is evident in all living systems wherein control structures
and hierarchies are present at the intracellular level. the intercellular level,
the organs, and the organ system and organism level.  Furthermore,
biological and physiological systems are self-regulating systems. and hence,
they additionally involve feedback (nested or interconnected) subsystems
within their hierarchical structures. Finally, the complexity of biological
and physiological system modeling and control is further exacerbated when
addressing system modeling uncertainty inherent to system biology and
physiology.

Another complicating factor in the stability analysis of many nonneg-
ative and compartmental dynamical systems is that these systems possess
a continnum of equilibria.  Since every neighborhood of a nonisolated
equilibrium contains another equilibrium, a nonisolated equilibrium cannot
be asymptotically stable. Hence, asymptotic stability is not the appropriate
notion of stability for systems having a continnum of equilibria. Two
notions that are of particular relevance to such systems are convergence and
semistability. Convergence is the property whereby every system solution
converges to a limit point that may depend on the system initial condition.
Semistability is the additional requirement that all solutions converge to
limit points that are Lyapunov stable. Semistability for an equilibrium thus
implies Lyapunov stability, and is implied by asymptotic stability.® The
dependence of the limiting state on the initial state is seen in numerous stable
nonnegative systems and compartmental systems. For these systems, every
trajectory that starts in a neighborhood of a Lyapunov stable equilibrium
converges to a (possibly different) Lyapunov stable equilibrium, and hence,
these systems are semistable.

The main objective of this monograph is to develop a general analysis
and control design framework for nonnegative and compartmental dynamical
systems. The main contents of the monograph are as follows. In Chapter 2,
we establish notation and definitions. and develop stability theory for
nonnegative and compartmental dynamical systems. Specifically, Lyapunov
stability theorems as well as invariant set stability theorems are developed
for linear and nonlinear, continuous-time and discrete-time nonnegative and
compartmental dynamical systems. Chapter 3 provides an extension of the
results of Chapter 2 to nonnegative and compartmental dynamical systems

31t is important to note that semistability is not merely equivalent to asymptotic stability of
the set of equilibria. Indeed. it is possible for a trajectory to converge to the set of equilibria
without converging to any one equilibrium point as examples in [34] show.
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with time delay. Specifically, stability theorems for linear and nonlinear
nonnegative and compartmental dynamical systems with time delay are
established using Lyapunov-Krasovskii functionals.

Since nonlinear nonnegative and compartmental dynamical systems
can exhibit a full range of nonlinear behavior, including bifurcations. limit
cycles, and even chaos, in Chapter 4 we present necessary and sufficient
conditions for identifying nonnegative and compartmental systems that
admit only nonoscillatory and monotonic solutions.  As a result, we
provide sufficient conditions for the absence of limit cycles in nonlinear
compartmental systems.

In Chapter 5, using generalized notions of system mass and energy
storage, and external flux and energy supply. we present a systematic treat-
ment of dissipativity theory for nonnegative and compartmental dynamical
systems. Specifically, using linear and nonlinear storage functions with linear
supply rates. we develop new notions of dissipativity theory for nonnegative
dynamical systems. In addition, we develop new Kalman-Yakubovich-Popov
equations for nonnegative systems for characterizing dissipativeness with
linear and nonlinear storage functions and linear supply rates. Finally,
these results are used to develop general stability criteria for feedback
interconnections of nonnegative dynamical systems. In Chapter 6, we extend
the results of Chapters 2 and 5 to develop stability and dissipativity results
for impulsive nonnegative and compartmental dynamical systems.

Using the concepts developed in Chapters 2. 4, and 5. in Chapter 7
we use compartmental dynamical system theory to provide a system-
theoretic foundation for thermodynamics. Specifically, using a state space
formulation, we develop a nonlinear compartmental dynamical system model
characterized by energy conservation laws that are consistent with basic
thermodynamic principles. In addition. we establish the existence of a
unique, continuously differentiable global entropy function for our com-
partmental thermodynamic model. and using Lyapunov stability theory we
show that the proposed thermodynamic model has convergent trajectories
to Lyapunov stable equilibria with a uniform energy distribution determined
by the system initial energies.  Finally, using the system entropy. we
establish the absence of Poincaré recurrence for our thermodynamic model
and develop a clear connection between irreversibility. the second law of
thermodynamics, and the entropic arrow of time.

In Chapter 8, we merge the theories of semistability and finite-
time stability [32, 35] to develop a rigorous framework for finite-time
thermodynamics. Specifically. using a geometric description of homogeneity
theory, we develop intercompartmental flow laws that guarantee finite-time



