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Algebra I

An Incremental Development



To The Student

Algebra is not difficult. Algebra is just different, and time is required in order for
different things to become familiar. In this book we provide the necessary time by
reviewing all concepts in every Problem Set. Also, the parts of a particular concept are
introduced in small units so that they may be practiced for a period of time before the
next part of the same concept is introduced. Understanding the first part makes it easier
to understand the second part. If you find that a particular problem is troublesome, get
help at once because the problem won’t go away. It will appear again and again in
future Problem Sets.

The Problem Sets contain all the review that is necessary. Your task is to work all
the problems in every Problem Set. The answers to the Odd-Numbered Problems
are in the Appendix. It will be necessary to check the answers to the even problems
with a classmate. Don’t be discouraged when you continue to make mistakes.
Everyone makes these mistakes, and makes them often, and for a long period of time.
A large part of learning algebra is devising defense mechanisms to protect you from
yourself. If you work at it, you can find ways to prevent these mistakes. Your teacher
is an expert because your teacher has made the same mistakes many times and has
finally found ways to prevent them. You must do the same. Each person must devise
his or her own defense mechanisms.

The repetition is necessary to permit all students to master all of the concepts, and
then the application must be practiced for a long time to insure retention. This practice
has an element of drudgery to it, but it has been demonstrated that people who are not
willing to practice fundamentals often find success elusive. Ask your favorite athletic
coach for his opinion on the necessity of practicing fundamental skills.

To The Teacher

The effectiveness of this book was demonstrated during the 1980-1981 school year in
twenty Oklahoma public schools. Over 1,360 ninth grade Algebra I students partici-
pated. In each school one teacher taught one section from a prototype of this book and
one or more sections from the Algebra I book normally used. During the spring, sixteen
10-15 minute tests were given. Each test was on one fundamental skill of beginning
algebra and the tests were constructed from problems submitted by the teachers. The
topics tested were: signed numbers, evaluation of expressions, solutions of equations
in one unknown, adding like terms, number word problems, natural number ex-
ponents, factoring, percent word problems, value word problems, addition of rational
expressions, simplification of radicals, linear equations, simultaneous equations, and
uniform motion word problems. Overall, the students who used this book more than
doubled the scores of the students who had the same teacher but used a standard
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book. For tests on scientific notation and negative exponents, eight classes of Algebra
II students were used as controls. The 9th graders who had used this book more than
tripled the scores of the Algebra II students on both of these tests. The test program was
monitored by the Oklahoma Federation of Teachers, and they have certified the
results.

Students should work every problem in every problem set. This book
provides only the problems that are necessary and the problems are not in pairs
so that either the odd problems or the even problems may be assigned. Experience
with this book will demonstrate that no extra problems of the new kind are necessary or
desirable. In this book the learning process is spread out and comprehension will come
in time. The emphasis is on review and not on an all out attack on the new concept. .
This development spreads out the learning process, increases the depth of understand-
ing and improves long term retention. Experience with books that use the traditional
development of topics has proved that an intensive initial attack on a new concept
lends little to long term retention. Remember that this book never drops a topic once it
has been introduced and that the student will continue to wrestle with every concept in
every homework problem set.
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REVIEW
LESSON A

A.A

addition
and subtraction
of fractions

Addition and subtraction of fractions

In order to add or subtract fractions that have the same denominators, the numerators
are added or subtracted and the result is recorded over a single denominator, as shown
here.

5 2 1 5 2

TRTRE 111 11

J—

If the denominators are not the same, it is necessary to rewrite the fractions so that they
have the same denominators.

REWRITTEN WITH

PROBLEM EQUAL DENOMINATORS ANSWER
1,2 5,6 11

@ 3+3 15" 15 15
21 16 3 13

® 3-3 2% %

A mixed number is the sum of a whole number and a fraction. Thus the notation

3
13-
5

does not mean 13 multiplied by 2 but instead 13 plus 3.

3
13 42
T3

When we add and subtract mixed numbers, we handle the fractions and the whole
numbers separately. In some subtraction problems it is necessary to borrow, as shown in

).

REWRITTEN WITH

PROBLEM EQUAL DENOMINATORS ANSWER
3 1 24 5 29
3 1 24 5] 19
(d) 135 — 2§ 13% — 24—0 HE
BORROWING
3 7 24 3 4 9
€ 132 —2- 1328 B _ 8 3 02

5 8 40 40 40 40 40
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Lesson 1

problem set A Add or subtract as indicated. Write answers as proper fractions reduced to lowest terms

or as mixed numbers.

1. l + g 2 é — E
55 8 8

cBES e
Different denominators:

o Lyl 3

0. Ttz 0. -2

12 %—g 15-%—2
TR 16, =+ o

18 $+%+% w.§+%+%
SR SRR N
Addition and subtraction of mixed numbers:
23. 2% + 3% 24. 7% + 4%
26. 6% + 1% 27. 8? - 2?
Subtraction with borrowing:
m.w§—7g 30 ué_ﬂ%
32. 4211171 — 173 33. 78% — 14110
35. 213 — 15% 36. 21% 717—0

11.

14.

17.

20.

25.

31.

37.

1+8
333
2 1
38
5+2
95
17 _4
20 5
4_2
75
4 1,2
11 6 3
1 2
1= =
st 73
a1k — a2
3 15
2 T
ng—lﬁg
1 5
43-13—6g
3 9
B — 2o

LESSON 1

1.A

numerals
and numbers

Real numbers and the number line -
Multiplication and division of fractions

A number is an idea. A numeral is a single symbol or a collection of symbols that we use
to express the idea of a particular number.



1.B

natural
or counting
numbers

1.C

real numbers

5 1.C real numbers

The three drawings above all have the quality of threeness. The three children and the
three pencils both bring to mind the idea of three. The drawing at the right also brings to
mind the idea of three, although all the things in the drawing are not of the same kind.

If we wish to use a symbol to designate the idea of three, we could write any of
the following:

30 27 33
I11, 3, 10’ 5" T 241, 6 = 2, 11— 38

Each of these is a symbolic representation of the idea of 3. Throughout the book when
we use the word number, we are describing the idea ; and we will use numerals to designate
the numbers. But we will remember that none of the marks we make on paper are
numbers because

A number is an idea!
Since the symbols

30

3 i
and 10

are both numerals that represent the same number, we say that they have the same value.
Thus, the value of a numeral is the number represented by the numeral, and we see that the
words value and number have the same meaning.

The system of numeration that we use to designate numbers is called the decimal system.
It was invented by the Hindus of India, passed to their Arab neighbors, and finally
transmitted to Europe circa 1200 A.D. The decimal system uses 10 symbols that we call
digits. These digits are

0, 1, 2; 3 4, 5, 6, 7, 8, 9

We use these digits by themselves or in combination with one another to form the
numerals that we use to designate decimal numbers.

We call the numbers that we use to count objects or things the natural numbers or the
counting numbers. When we begin counting, we always begin with the number 1 and
follow it with the number 2, etc.

1, 2, 3 4 5 6, 7, 8 9 10, 11, 12, 13,...

It would not be natural to try to count by using numbers such as % or 0 or 2, so these
numbers are not called natural or counting numbers. We designate the natural or
counting numbers with the listing above. The three dots after the number 13 indicate that
this listing continues without end.

The numbers of arithmetic are zero and the positive real numbers. We say that a positive
real number is any number that can be used to describe a physical distance greater than zero.



1.D

number lines

6 Lesson 1

Thus, all of the numbers shown here

% .000163 363 3% 46 17—1 400.1623232323
are positive real numbers, for all of them can be used to describe physical distances
when used with descriptive units such as feet, yards, etc.

3
% mile .000163 yard 363 feet 3§ meters

46 inches 1—71— kilometers 400.16232323 centimeters

The number zero is not a positive number, but it can be used to describe a physical
distance of no magnitude, and we say that zero is also a real number. In addition to the
positive numbers and zero, in algebra we use numbers that we call negative numbers and
these numbers are also called real numbers. The ancients did not understand or use
negative numbers. A man could not own negative 10 sheep. If he owned any sheep at
all, the number of sheep had to be designated by a number greater than zero. The
ancients could subtract 4 from 6 and get 2, but they felt that it was impossible to subtract
6 from 4 because that would result in a number that was less than zero itself. To their
way of thinking, this was clearly impossible.

While some might tend to agree with the ancients, to the modern mathematician,
physicist, or chemist, the idea or concept of negative numbers does exist, and it is a useful
concept. We say that every positive real number has a negative counterpart, and we call
these numbers the negative real numbers. We must always use a minus sign when we
designate a negative number as we see here by writing negative seven.

-7
We may use a plus sign to designate a positive number as we see by writing positive seven,
+7

or we may leave off the plus sign as we did in arithmetic and just write the numerical part
with no sign.

7

We must remember that when we write a numeral with no sign, we designate a positive
number. When we are talking about negative numbers as well as positive numbers, we
say that we are talking about signed numbers. As we shall see later, the use of signed
numbers will enable us to lump the operations of addition and subtraction into a single
operation which we will call algebraic addition.

In the 1950s the so-called new math appeared, and among other things it introduced the
number line at the elementary algebra level. The number line can be used as a graphic aid
when discussing signed numbers, and it is especially useful when discussing the addition
of signed numbers. _
To construct a number line, we first draw a line and divide it into equal units of
length. The units may be any length as long as they are all the same length.

} Il | } 4 I | | 4 i | } 1 } } } 1 1
T T T T T T T T L

Many books show small arrows on the ends of number lines to emphasize that the lines
continue without end in both directions. The arrowheads are not necessary and may be
omitted.



