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Introduction

This book is addressed to one problem and to three audiences.

The problem is the mathematical structure of modern physics: statistical
physics. quantum mechanics, and quantum fields. The unity of mathemati-
cal structure for problems of diverse origin in physics should be no
surprise. For classical physics it is provided, for example, by a common
mathematical formalism based on the wave equation and Laplace’s equation.
The unity transcends mathematical structure and encompasses basic
phenomena as well. Thus particle physicists, nuclear physicists, and con-
densed matter physicists have considered similar scientific problems from
complementary points of view.

The mathematical structure presented here can be described in various
terms: partial differential equations in an infinite number of independent
variables, linear operators on infinite dimensional spaces, or probability
theory and analysis over function spaces. This mathematical structure of
quantization is a generalization of the theory of partial differential equa-
tions, very much as the latter generalizes the theory of ordinary differential
equations. Our central theme is the quantization of a nonlinear partial
differential equation and the physics of systems with an infinite number of
degrees of freedom.

Mathematicians, theoretical physicists, and specialists in mathematical
physics are the three audiences to which the book is addressed.

Each of the three parts is written with a different scientific perspective.
Part I is an introduction to modern physics. It is designed to make the
treatment of physics self-contained for a mathematical audience; it covers
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X1l Introduction

quantum theory, statistical mechanics, and quantum fields. Since it is ad-
dressed primarily to mathematicians, it emphasizes conceptual structure—
the definition and formulation of the problem and the meaning of the
answer—rather than techniques of solution. Because the emphasis differs
from that of conventional physics texts, physics students may find this part
a useful supplement to their normal texts. In particular, the development of
quantum mechanics through the Feynman-Kac formula and the use of
function space integration may appeal to physicists who want an introduc-
tion to these methods.

Part II presents quantum fields. Boson fields with polynomial self-
interaction in two space-time dimensions —P(¢), fields—are constructed.
This treatment is mathematically complete and self-contained, assuming
some knowledge of Hilbert space operators and of function space integrals.
The original construction of the authors has been replaced by successive
improvements and simplifications accumulated for more than a decade. This
development is due to the efforts of a small and dedicated group of some
thirty constructive field theorists including Frohlich, Guerra, Nelson,
Osterwalder, Rosen, Schrader, Simon, Spencer, and Symanzik, as well as the
authors. Physicists may find Part 11 useful as a supplement to a conventional
quantum field text, since the mathematical structure (normally omitted from
such texts) is developed here.

Part Il contains the resolution of a scientific controversy. For years
physicists and mathematicians questioned whether nonlinear field theory is
compatible with relativistic quantum mechanics. Could quantization defined
by renormalized perturbation theory be implemented mathematically? The
mathematically complete construction of P(¢), fields presented here and the
construction of Yukawa, ;, ¢3, sine-Gordon,, Higgs,, etc., fields in the
literature provide the proof. Central among the issues resolved by this work is
the meaning of renormalization outside perturbation theory. The math-
ematical framework for this analysis includes the theory of renormalization
of function space integrals. From the viewpoint of mathematics the
implementation of these ideas has involved essentially the creation of a new
branch of mathematics.

Whether the equations are mathematically consistent in four space-time
dimensions has not been resolved. There is speculation, for example, that
the equations for coupled photons and electrons (in isolation from other
particles) may be inconsistent, but that the inclusion of coupling to the
quark field may give a consistent set of equations. A proper discussion of
this issue 1s beyond the scope of this book, but is alluded to in Chapters 6
and 17.

Particle interaction, scattering, bound states, phase transitions, and criti-
cal point theory form the subject of Part III. Here we develop the con-
sequences of the Part II existence theory and make contact with issues of
broad concern to physics. This part of the book is written at a more
advanced level, and is addressed mainly to theoretical andmathematical
physicists. It is neither self-contained nor .complete. blf{ is” intended to
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develop céntré?l ideas, explain main results of a mathematical nature, and
provide an introduction to the literature.

Condensed matter physicists may find interesting the discussion of phase
transitions and critical phenomena. The central matters are series expansions
and correlation bounds. These methods find application in diverse areas. We
give detailed justification of the connection (by analytic continuation) be-
tween quantum fields and classical statistical mechanics. Professional
physicists could well start directly in Part 111, returning to earlier material
only as necessary.

Readers interested in the historical development of constructive quan-
tum field theory are referred to the various survey articles of the authors
and others. In this book the specific, detailed references are minimized,
especially in the self-contained Parts [ and II. A large bibliography has
been included; we apologize for the inevitable omissions.

Numerous colleagues, students, and friends helped make this book
possible. Of particular importance were R. D’Arcangelo, R. Brandenberger,
B. Drauschke, J.-P. Eckmann, J. Gonzalez, W. Minty, K. Peterson, P. Petti,
the staff at Springer Verlag, and especially our wives Adele and Nora. We are
also grateful to the ETH, the IHES, the University of Marseilles and the CEN
Saclay for hospitality as well as to the Guggenheim Foundation and the NSF
for support.



Conventions and Formulas

Fourier transforms

fl) =m0 |

e'’Pf~ (p) dp,

() = @u) ™% [ ™ (x) dx,

f(0)=(@2m)" "2 X e™f ~(n),

=@ | e r(0) do

Minkowski vectors

x = (xo, X) = (Xg, -+-» X4-1),
x?=x-x=-x3+x% pr=p-p=—pi+p
X p=) X;p'=—XoPo+X"P,

d—1
O=-02+A= —0x5+ Y oxi.

i=1

Euclidean vectors
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Xvi Conventions and Formulas

d
A=Y dx%
i=1
Schrodinger’s equation
h=h2n,
ihd = HO. 0(t) = e "1"9(0),
(‘1
p= —ih —, [p(x), g(v)] = —ih o(x — y)
cq
Covariance operators C,, € %, satisfy

(=A+m?)C,, =0

o and ;y matrices

a=y a,y,,

@’ =3 a; =a’
Dirac equation (zero field)
(h¢ — mc)y = 0.

Dirac equation in external field A

hﬁ+i€A —HlC)l// =0.
o
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entropy
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time ordering: truncation
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Wiener measure

Wiener path space
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quantum field; configuration of classical field
Gaussian measure, covariance C
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quantum field; state in #
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gradient; divergence

absolute value; area, volume or number of - ; norm
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Fourier transform
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