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Preface

Computer methods and simulations allow engineers to study complex problems in
detail. They can take into account various factors that influence the investigated
phenomenon. Moreover, they can examine problems throughout a wide range of
parameters. Such cases occur when the existing or designed structures are to carry
heavier loads and should optimally resist external forces that involve static displace-
ments or vibrations. Generally, vibrational or wave problems in structural dynamics
require a detailed study of numerous cases.

Moving inertial loads are applied to structures in civil engineering, robotics, and
mechanical engineering. Some fundamental books exist, as well as thousands of
research papers. Well known is the book by L. Fryba, Vibrations of Solids and
Structures Under Moving Loads, which describes almost all problems concerning
non-inertial loads. Unfortunately, this wide literature is rarely reflected in computer
codes. Well known commercial packages enable the analysis of complex mechani-
cal problems, with material and geometrical non-linearities, but they fail in the case
of moving loads.

This book presents broad description of numerical tools successfully applied to
structural dynamic analysis. Unfortunately none of the classical methods can be
directly applied to non-classical problems. Moving mass problems are an exam-
ple of such a group of problems. It can be generally considered as problems with
distributed parameters. Physically we deal with non-conservative systems. Math-
ematically they are described by linear partial differential equations with variable
coefficients. We will focus our discussion on the moving inertial particle rather than
on the structure carrying the massless load. The discrete approach formulated with
the use of the classical finite element method (FEM) results in elemental matrices,
which can be directly added to global structure matrices. The classical approach is
considered in the simplest case in our book as the finite element method applied to
space with another method applied to integration of the time derivatives. A more
general approach is carried out with the space-time finite element method. It can
be considered as an extension, to the time domain, of the well known finite element
method: the spatial finite element gains an additional time dimension. In such a case,
a trajectory of the moving concentrated parameter in space and time can be simply
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defined. What is more, elemental characteristic matrices can easily be derived and
the formulation is relatively clear. The crucial point, however, is the uniform treat-
ment of the space and time dependent terms in the differential equations. Discussion
and the experience gained then allow of a better understanding of a formulation in
the case of the Newmark method, central difference method, and other time integra-
tion methods commonly used in structural dynamics.

We consider structures described by pure hyperbolic differential equations such
as strings and structures described by hyperbolic—parabolic differential equations
such as beams and plates. More complex structures such as frames, grids, shells,
and three-dimensional objects, can be treated with the use of the solutions given in
this book.

The problems treated in the monograph can be related to problems of mathemati-
cal physics. The resulting matrices that describe the influence of the moving inertial
particle can be directly implemented in computer codes.

This monograph would not have been possible without the support of the project
Lider/26/40/L-2/10/NCBiR/2011 and project of Foudation for Polish Science —
START.

Warsaw, Czestaw 1. Bajer
February 2012 Bartlomiej Dyniewicz
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Chapter 1
Introduction

Computer methods are commonly used now in engineering design, manufacturing,
and applications. They replace experimental methods of verification, especially if
experiments are expensive, time consuming, or difficult to perform. Static analysis,
plastic deformations, optimization, and free vibrations are fields sufficiently well
explored, and now possess efficient numerical procedures implemented in commer-
cial software. But the case of moving loads is not represented in such computer
codes. Design engineers use simplifications and approximations known from ana-
lytical solutions. These are often adequate if the load does not change the dynamical
properties of the structure, i.e. is massless. In the case of an inertial load we do not
have adequate tools.

In this book we will present numerical methods which enable us to solve prob-
lems of the vibrations of structures subjected to inertial moving loads. Only simple
and particular cases of problems with moving inertial load can be solved analyti-
cally. Such problems usually require numerical computations at the final stage or, if
we use discrete methods, during the whole analysis. Analytical and semi-analytical
solutions are indispensable when we verify our numerical results. Therefore we will
present semi-analytical solutions as a base for a better understanding of both the
differential equations that govern the motion of these structures, and features and
properties of solutions. Engineers, researchers and students will find here matrices
and algorithms ready for use, material which will enable them understanding me-
chanical problems, and an elaboration of the software procedures for basic or more
complex structural elements.

Inertial loads moving on strings, beams, and plates at sub- or super-critical speed
are of special interest. Theoretical solutions are applied to many practical prob-
lems: train—track interaction, vehicle-bridge interaction, pantograph collectors in
railways, magnetic rails, guideways in robotic solutions, etc. Such problems have
been widely treated in the literature. Attempts at solving such problems began in
the middle of the 19th century. However, up to now we have not had a complete and
closed analytical solution. The term describing the concentrated mass motion is the
reason for the difficulties. Systems of differential equations of variable coefficients,
which, except in a few cases, do not have analytical solution, are serious roadblocks

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 1-20.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

to obtaining closed-form solutions. These types of equations are finally solved by
numerical means.

Structures subjected to moving loads are often encountered in engineering prac-
tice. Such are the bridges and viaducts loaded with vehicles [147], flyovers for
traditional or magnetically lifted trains, road or airfield plates, sliding robot ma-
nipulators, machine tools, weapon firing barrels, ropes of transporting systems, and
current collectors for power supply systems for rail vehicles (Figure 1.1). They are
exposed to much larger displacements than when under static loads or slowly slid-
ing loads. This becomes obvious if we look at the undeformed structure at rest,
which is suddenly subjected to a force. Such a structure starts to vibrate around its

Fig. 1.1 Examples of problems with moving mass.
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equilibrium position in the unladen state, through the state of static equilibrium
under load, to obtain an amplitude equal to twice the static deflection under load.
Therefore, the rapid entry of a loading force has a similar effect. The passage of the
load, if takes place cyclically with a certain frequency, will increase the deflection.
If its frequency is associated with the passage speed in such a way that at the exit
of one load the next will enter, then we obtain the dependence of the maximum
deflection of the structure under load on the speed of the travel of the load Wy (V).

The maximum deflection occurs at the point located generally around 0.5-0.7 of
the span, depending on the speed of travel. Proceeding further, we can examine the
speed at which the maximum deflection of the journey will be greatest. This speed
is called the critical speed. In the case of a string, the critical velocity corresponds
to the wave propagation velocity ¢. The critical speed is the important feature from
a practical point of view. It determines the most unfavorable value of the deflection,
to which the structure must be made resistant. For this reason, the study of a struc-
ture under a moving load is an important engineering problem. Unfortunately, the
existing commercial packages do not perform computational simulations of such
tasks. As we will see, the problem is difficult and this can be ascribed to the lack of
appropriate computerized procedures.

Here, attention should be given to the classification of the loads. The simplest
case is shown in Figure 1.2a. It is irrelevant that the force applied directly to the
structure is replaced with an oscillator, which will have non-zero mass. Although
the mass effect will be visible in the results, it will not be the result of a task with
the inertial load [112]. Moreover, although the impact of the mass of the oscillator
will increase with increasing spring stiffness, then the solution does not tend uni-
formly to the solution for the case of an inertial load. Additional degree of freedom
oscillations introduce additional artificial effects in the form of resonance: the in-
crease or decrease in amplitude at certain speeds. A mass load is shown in Figure
1.2b. The mass motion affects the outcome at non-zero displacements w(x,7) when
0 <t < I/v. Otherwise, the participation of factors causing displacement is required,
such as the pulse force (Figure 1.2).

Let us take a railway wheel with mass 500 kg. Together with the axle and the
axle box its inertia exceeds a ton. The rail has a linear mass density of 60 kg/m. The
influence of this concentrated mass significantly changes the dynamic properties of
a structure (Figure 1.3). We claim that a significant part of the rail wheel should be

m Y,
—
Pv P
m \J m \J
a b C

Fig. 1.2 Loads: a) massless, b) inertial, c) inertial and gravity.
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Fig. 1.3 The wheel inertia influencing the rail motion

unsprung. In engineering practice we wish to take into account a real structure, with
all the atypical elements for an analytical model, i.e. ballast as an elastic foundation,
sleepers as periodic supports, elastic pads, influence of several wheelsets, coupling
and interacting with a boogie, etc. Accurate results are fundamental for decisions
at the design stage. An accurate estimation of the dynamic influence is essential for
proper modelling. Accurate results are important not only for increasing the dura-
bility and reliability of systems: predicting the level of the dynamic response of
structures under a moving load facilitates the protection of the environment, espe-
cially populated urban centres or historic places.

Existing finite element (FEM) modelling software allows us to perform compu-
tations in several stages grouped into a batch procedure. In such a case, one can split
the dynamic problem into a sequence of static problems with structures subjected to
gravitational and inertial forces. Such a solution corresponds to the simple lumping
of a moving mass into nodal points, as depicted in Figure 1.4. Such an approach is
correct only at extremely low speeds of the mass, practically quasistatic. Problems
containing beams as a supporting structure in the case of a moderate speed of a mass

P/\P
1l * e,

my ‘m

2

B |
) |

Fig. 1.4 Ad-hoc mass lumping to nodes.
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usually give limited solutions. Unfortunately they are neither convergent nor stable.
Even a small variation in the parameters produces significant alterations of the re-
sults. The pure hyperbolic differential equation describing the string motion results
in divergent solutions.

Travelling loads are generally unlikely to be solved by commercial codes. Most
of the existing systems for dynamic simulations usually do not allow us to solve even
simple problems comprising travelling massless point forces, travelling distributed
non-inertial loads, or even travelling and elastically joined moving substructures.
Inertial moving loads are completely unimplemented by computer systems. The in-
tuitive approach to discrete analysis with ad-hoc lumping of forces and masses to
neighbouring nodes always fails. Sometimes, especially in the case of beams, nu-
merical solutions are limited, but significantly inaccurate. We emphasize here that
the travelling mass problem is not trivial, even if at first sight it seems to be.

1.1 Literature Review

In the literature, numerous historical reviews concerning the moving load problem
exist (for example Panovko [106], Yakushev [146], Dmitrijev [43]). In most cases
the moving massless constant force was considered as a moving load. This type of
problem results in closed solutions. Unfortunately, the problem of inertial loads is
still open. Saller in [123] considered a moving mass for the first time. He proved,
in spite of essential simplifications, the significant influence of the moving mass
on the beam dynamics. In the 1930s, two contributions appeared, important for re-
searchers working in the field of moving loads. Inglis [70] applied simplifications
and the solution was expressed by only the first term of a trigonometric series. The
time function fulfilled a second order differential equation with variable coefficients.
This equation was derived by considering the acceleration under the moving mass,
expressed by the so-called Renaudot formula. In fact it is the derivative computed
with the chain rule. The final solution of the differential equation with variable co-
efficients was proposed as an infinite series. It results in an approached solution.

Schallenkamp [124] proposed another approach to the problem of a moving
mass. However, his attempt only allows us to describe the motion under the mov-
ing mass. The method of separation of variables by the expansion of the unknown
function into a sine Fourier series was applied. Boundary conditions in the beam
were taken into account in a natural way. The ordinary differential equation, which
describes the motion under the moving mass, was expressed in generalized coordi-
nates by using the second Lagrange equations. The generalized force was derived
from the virtual work principle. Schallenkamp’s consideration is relatively complex
and converges slowly since the final solution is expressed in terms of a triple infinite
series.

The works of Inglis and Schallenkamp can be considered as the basis for the anal-
ysis of the problem of a moving mass in the succeeding works of Bolotin [36, 35],
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Morgajewskij [101] and others. An excellent and important monograph in this field
was written by Szczesniak [133]. One can find there hundreds of references con-
cerning moving loads on beams and strings. In [138] the authors consider a simply
supported beam modelled by the Bernoulli-Euler theory. The equation of motion is
written in an integral-differential form with Green’s function terms. In order to solve
this equation, a dual numerical scheme was used. A backward difference technique
was applied to treat the time parameter and numerical integration was used for the
spatial parameter. This method of solution, though applied to higher velocities, still
requires complex mathematical operations. Each solution enables us to determine
only the displacements under the moving load and does not give solutions for a wide
range of parameters x and ¢. Only one closed analytical solution can be found in the
literature. Smith [127] proposed a purely analytical solution for the inertial moving
load, however, only in the case of a massless string. The basic motion equation,
without the term which describes the inertia of the string, was transformed to the
hyper-geometrical equation. It has an analytical solution in terms of infinite series.
Fryba [56] applied the same approach and found a closed analytical solution for the
particular case. However, the formula given in [56] has mistakes.

Recent papers have contributed analyses of complex problems of structures sub-
jected to moving inertial loads [144] or oscillators [29, 97, 112]. Variable speeds
were analysed in [3, 58, 99]. The equivalent mass influence is analysed in [57].
An infinitely long string subjected to a uniformly accelerated point mass was also
treated [121] and analytical solution of the problem concerning the motion of an
infinite string on a Winkler foundation subjected to an inertial load moving at a con-
stant speed was given [74].

In one of our papers [48], we considered small vibrations of the massless and
massive string subjected to a moving inertial load. We proposed an analytical—
numerical solution of the problem. The final equation has the form of a matrix
differential equation of the second order. Numerical integration results in a solu-
tion over a wide range of the velocity: under-critical and over-critical. It exhibits
a discontinuity of the mass trajectory at the end support point. This new feature
had not yet been reported in the literature. A closed-form solution in the case of
a massless string was analysed and its discontinuity was proved mathematically.
Fully numerical results obtained for the inertial string had a similar property. Since
small vibrations are analysed, the discontinuity effect discussed in the paper was of
purely mathematical interest.

The results are compared with the approximate numerical solutions obtained by
the finite element method (FEM). The string is subjected to a moving oscillator. In
the case of a rigid spring, we approach the analytical solution. However, in the case
of higher speeds (greater than 20% of the critical wave speed), the accuracy of the
FEM solution is poor.

A review of the literature devoted to numerical methods applied to moving mass
problems will be given in Chapter 4.
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1.2 Solution Methods

In the early period of the rapid development of computer methods, falling in the
eighties of the last century, researchers analysed and described the basic properties
of discrete methods of calculation. These included:

e the impact of the finite element mesh density on the results, the estimation of the
error of approximation,

e reducing the size of the task by using techniques of static and dynamic conden-
sation, the division into subsystems, etc.

e creation and study of the properties of new, more accurate finite element models,
mainly bending elements, the analysis of the locking of degrees of freedom, over-
stiffening, the inclusion of complex constitutive relations,

e the development of methods for the integration of the differential equations of
motion, characterized by unconditional stability, low computational cost, and ap-
propriately matched characteristics of spurious damping.

The capabilities of the known techniques were combined (finite difference and fi-
nite element method) and new methods were formulated (the boundary element
method, moving elements, meshless methods). The limited computational ability
of computers still forced work on improving the performance of the computing al-
gorithms. With the increasing power of processors and reductions in the costs of
memory, the effort of software developers has shifted to improve the utilisation of
existing computational programs: improved data input methods and attractive forms
of visualisation of the results. Computer programs were widely used in engineering
practice.

Today, computer modelling generally involves the phenomenon of change over
time. Both knowledge and computer tools allow you to take into account many fac-
tors influencing the processes in structures with complex shape. At the same time,
less and less importance is attached to the evaluation of the correctness of the results,
and attention is focused on a faithful reproduction of the geometry. Geometric mod-
elling, an appropriate choice of the type of finite elements, and then imaging the
stress fields, are the activities which usually limit the operation engineer, i.e., the
user of the computing package. Less time is devoted to understandng the numerical
and mechanical properties of the models created. Hence, in many cases, the results
obtained are difficult to interpret. Effects arising from properties of the numerical
model emerge. Sometimes they may be mistakenly regarded as the characteristic
features of the phenomenon studied. Differences in the results obtained with two
different commercial packages are no longer a cause for concern. Knowledge and
experience is slowly being replaced by knowledge about the flaws in package de-
sign and how to overcome the technical difficulties encountered. Packages designed
for crashworthiness analysis can be a good example. The explicit time integration
method of differential equations used in the computations turns out to be unstable in
the case of lightweight discrete elements, or those with small dimensions, or which
are relatively rigid. In this case, there is a way to prevent instability by artificially
increasing the weight of selected points. A stable solution is obtained, and then the



