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PREFACE

The Asian Logic Conference has occurred every three years since its
inception in Singapore in 1981. It rotates among countries in the Asia Pa-
cific region with interests in the broad area of logic including theoretical
computer science. It is now considered a major conference in this field and
is regularly sponsored by the Association for Symbolic Logic. This volume
contains papers, many of them surveys by leading experts, of the 9th meet-
ing in Novosibirsk, Russia.

We were very pleased to find that World Scientific were enthusiastic
to support this venture. Authors were invited to submit articles to the
present volume, based around talks given at either meeting. The editors
were very concerned to make sure that the planned volume was of high
quality. We think the resulting volume is fairly representative of the thriving
logic groups in the Asia-Pacific region, and also fairly representative of the
meetings themselves.

The Ninth Asian Logic Conference was organised by Sobolev Institute
of Mathematics of the Siberian Branch of the Russian Academy of Sciences
and Novosibirsk State University under the sponsorship of Russian Foun-
dation for Basic Research, Association for Symbolic Logic, Department of
Mechanics and Mathematics of Novosibirsk State University, Siberian Foun-
dation for Algebra and Logic, Novosibirsk Center of Information Technolo-
gies UniPro Co., Ltd., LLC Alekta, and Transtext Co. Ltd.

The conference took place in Novosibirsk, Akademgorodok, Russia, from
August 16 to August 19, 2005.

The programme consisted of plenary lectures delivered by invited speak-
ers and contributions in four sections.

Plenary speakers were Pavel Alaev (Russia), Lev Beklemishev (Russia,
Netherlands), Su Gao (USA), Yurii Ershov (Russia), Sanjay Jain (Singa-
pore), Vladimir Kanovei (Russia), Bakhadyr Khoussainov (New Zealand),
Andrei Mantsivoda (Russia), Joe Miller (USA), Hiroakira Ono (Japan),
Vladimir Rybakov (Russia, Great Britain), Masahiko Sato (Japan), Moshe
Vardi (USA), Andrei Voronkov (Great Britain), Xishun Zhao (China). The
total number of plenary lectures was 15. Contributed lectures on recursion



vi

theory, set theory, proof theory, model theory and universal algebra, non-
classical logic, and logic in computer science were presented in the following
sections: Computability theory, Model theory and Set theory, Non-classical
logics, Proof theory, and universal algebra, and Applications of logic in
computer science. The total number of contributed talks was 58.

The geography of the event included Russia, China, Japan, Singapore,
USA, New Zealand, Great Britain, Korea, Canada, Germany, Greece, Kaza-
khstan. The number of participants was about 100 scientists.

We are grateful to Ekaterina Fokina for the great work with authors
and referees while preparing the Proceedings and to Vladimir Vlasov for
making the camera-ready manuscript.

Preparing of the Proceedings was supported by the grant of President
of the Russian Federation for Leading Scientific Schools 4413.2006.1.

Sincerely yours, the editors:
Rod Downey, Sergey Goncharov, and Hiroakira Ono.
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ANOTHER CHARACTERIZATION OF THE
DEDUCTION-DETACHMENT THEOREM

SERGEI V. BABYONYSHEV

Krasnoyarsk State University
Krasnoyarsk, Russia
E-mail: bsv70@Qyahoo.com

In Abstract Algebraic Logic, a Hilbert-style deductive system is identified with
the set of its theories. This set of theories must be algebraic and must be closed
under arbitrary intersections and inverse substitutions. Similarly, a Gentzen-
style deductive system can be defined by providing a set of theories with similar
properties, but now each theory must be a set of sequents, not just formulas.
There are various kinds of Gentzen-style structures that naturally arise in con-
nection with Hilbert systems, but in generally they fall short of being Gentzen
systems. One of such structures is a family of axiomatic closure relations. Each
of axiomatic closure relations is defined as a set of consequences that can be
derived in the Hilbert system by modulo of some its theory, taken as the set
of additional axioms. The main result of this work is the proof that a Hilbert
system S admits the Deduction-Detachment Theorem if and only if the set of
all axiomatic closure relations for S forms a Gentzen system.

1. Introduction

In Algebraic Logic, an abstract Hilbert-style deductive system S is identified
with a family of sets, called S-theories, of formulas of a given propositional
language, such that this family, usually denoted by Th S, is
1) closed under arbitrary intersections, i.e., ThS is a closure system,
2) closed under unions of upward-directed families, i.e., Th S is algebraic,
3) closed under inverse substitutions, i.e., a preimage of any S-theory
under an arbitrary substitution is an S-theory again.
We call § “abstract” because its definition does not refer to any partic-
ular axiomatization. It is easy to see that the closure operator

(¥ : X NTeTh8 | X c T},

associated with such closure system Th S, defines a finitary, substitutional
consequence relation as follows

Xtsa < QEXS.

It was suggested by researchers of Barcelona group to treat the Gentzen



case similarly, and identify an abstract Gentzen-style deductive system with
the set of its theories with two distinctive features

1) a theory is a set of sequents, i.e., sequences of formulas,

2) a substitution acts on sequents componentwise.

Out of numerous and intricate connections between Hilbert- and
Gentzen-style deductive systems we will consider in this paper just one:
the deduction-detachment theorem, discovered independently by Tarski and
Herbrand. We define it in a slightly more general form.

A Hilbert-style deductive system admits the multiterm deduction-
detachment theorem if there is a finite set of formulas A = {6:(z,y)}ier
such that for all formulas a,  and every set of formulas T

T,akspB < (V6 € A)T ks é(a, B).

Even though the deduction-detachment theorem can and usually is for-
mulated by the Gentzen rules, it was not known what abstract Gentzen-
style deductive system corresponds to this axiomatization. It turns out that
the key to this correspondence is axiomatic closure relations:

Let S be an abstract Hilbert-style deductive system and T € ThS. Then

{(al,' .. va‘n.mB) | Tvala- .y Qn }—S ﬂ}
is called an axiomatic closure relation for S.

In other words, an axiomatic closure relation list all consequences that
are possible in S if we add all formulas from some S-theory as axioms (not
axiom schemes). In this paper we will show that

An abstract Hilbert-style deductive system S admits the multiterm
deduction-detachment theorem if and only if the set of ariomatic closure
relations for S forms an abstract Gentzen-style deductive system, i.e., it is

1) closed under arbitrary intersections,

2) closed under unions of upward-directed families,

3) closed under inverse substitutions.

In the following, abstract Hilbert-style deductive systems will be referred
to as simply Hilbert systems, and similarly for abstract Gentzen-style de-
ductive systems.

2. Definitions and Preliminaries

Sometimes the contraction “iff” or the symbol “ <= ” will be used for the
phrase “if and only if”, “(0” for “the end of proof” or “the end of definition”,



e “equals by definition”, “V” stands for “for all”, “ = ” for
“implies”.

Suppose A is a set. Then P(A) := {X | X C A} is the power-set of A.
We write X C,, A if X is a finite subset of A, furthermore P, (4) := {X |
X C, A}. For a family of sets C C P(A), we define (JC := Uxee X,
NC :=xec X- The n-th cartesian power of a non-empty set A is the set
A™ :=[];c,, A of all vectors of length n with elements from A. A* denotes
U, A™, the set of all non-empty finite sequences of elements of A. An
arbitrary element of AT we write as a. If @ = (ay,...,a,), we also write
{a} for {ai,...,an}. A function f : A" — A is called an n-ary operation
on A. Instead of f(a) or f({a)) we will often write f(@). A unary operation
f:A— Ais also called a mapping on A.

A binary relation R C A x A is reflexive if for all a € A, aRa; symmetric
if for all a,b € A, aRb implies bRa; transitive if for all a,b,c € A, from aRb
and bRc it follows that aRc; antisymmetric if for all a,b € A, aRb and bRa
implies that a = b. We call R C A x A a partial order on A if R is reflexive,
transitive and antisymmetric.

If < is a partial order on A and X C A, an element a € A such that
for all z € X, = < a is called an upper boundary of X; dually, an element
a € A such that for all x € X, > a is called a lower boundary of X; inf X
is the largest (if it exists) element of A among the lower boundaries of X;
similarly, sup X is the smallest (if it exists) element of A among the upper
boundaries of X. If inf (sup) exists for any two-element subset of A, A is
called a lower (upper) semi-lattice. In that case, inf{a, b} is usually denoted
by a A b, and sup{a, b} as a Vb, and interpreted as binary operations on A.
If both A and V defined for any pair of elements of A, A is called a lattice.
If inf and sup exists for any non-empty subset of A, A is called a complete
lattice.

For a mapping h : A — A the operator-style notation ha will be rou-
tinely used instead of the function-style notation h(a). Also any mapping h
defined on A can be uniquely extended to a mapping on A* by the following
definition:

h{ai,...,a,) = (hay,...,hay), for all (aj,...,a,) € AT.

The latter defines a complez (defined on sets of elements) mapping on
P(AT) as follows,

hX = {h(a) | (@) € X}, forall X C AT.

Note that the same symbol h will be used routinely for all these mappings.



A propositional language type is any non-empty set £. The elements of
L are called functional symbols in an algebraic context or logical connectives
in a logical context. With £ is associated an arity function p : £ — w such
that pf is the arity or rank of the functional symbol f € L. For each n € w:
L, :={f €L|pf=n}. An algebra A of type L is a pair (A, LA), where
A is a non-empty set called universe of A and LA = {fA | f € L} is a
list of operations over the set A such that for every f € £,,, fA: A™ — A.
Members of £A are called basic operations of A. If A, B are algebras of
the same type, then a mapping h : A — B is called a homomorphism
of A into B (written h : A — B), if for every f € £,, and every (a) € A",
hfA(a) = fBh(a). A homomorphism h : A — A is called an endomorphism
of A; if h is also surjective and injective, then h is an automorphism of A.

Let X = {z;}ics be a non-empty set. The set Fm. X of formulas (or
terms) of type L over the set of generators X is defined recursively as follows

1. X CFm, X,

2.if fe L, and ay,...,a, € Fmg X, then (f,a1,...,a,) € Fms X.
Traditionally a formula (f, a1,...,a,) is written as f(a,...,a,). Formu-
las will be denoted usually by small Greek letters. We write a(p1,...,pn)
or Var(a) C {p1,...,pn}, if @ € Fmg{p1,...,pn}. A vector (ay,...,ax)
of Fm} is called a sequent and will be written usually in the form
Gy v oy N1 P> Ol

We can induce the structure of an algebra on Fm, X by associating
with each f € £, a n-ary operation f¥™<X on the set Fms X defined by
fFme X(&) = f(a). The superscript in this case is usually omitted. This
algebra Fm, X is called the algebra of formulas (terms) of type L over
the set of wvariables X. We fix a countable set Var = {xg,z;,z2,...} of
propositional variables. Then Fm, Var is called the formula algebra over
the language of type £ and will be denoted Fm/,. The universe of Fm_, is
denoted as Fm,.

An algebra Fm, X is an absolutely free algebra over the set X in the
class of all algebras of type L£. This means that, for every algebra A of
type L, an arbitrary mapping h : X — A can be uniquely extended to
a homomorphism h : Fm; X — A. In particular any homomorphism h :
Fm,; X — A is determined by the mapping h : X — A. A homomorphism
h:Fmg — A is called an evaluation; a homomorphism h : Fm,; — Fm,
is called a substitution.

A family C C P(A) is upward-directed if for every pair X,Y € C there
is Z € C such that X,Y C Z. A subset C C P(A) is algebraic if YD € C
for every upward-directed subfamily D C C. A family C C P(A) is called a



closure system on A if A € C and (D € C for every non-empty subfamily
D C C. A closure system C on Fmg is (surjectively) invariant if for any
(surjective) substitution ¢ and any T € C, 07T := {a | ca € T} € C, or,
in other words, if c=1C C C for all (surjective) o : Fm; — Fm/. Similarly,
a closure system C on Fm is (surjectively) invariant if for any (surjective)
substitution o and any T € C, 07 'T = {avpa|o(@ra) € T} €C.

A closure operator on A is a mapping C : P(A) — P(A) such that for
any X,Y C 4, X C C(X) = C(C(X)) C C(XUY). A set X € P(A)
such that C(X) = X is called a closed set of C. A closure operator C is
finitary if for any X C A, C(X) = U{C(Y) | Y C. X}. The following
relations between closure systems and closure operators are well known:
1) if C is a closure operator on A, then the family of its closed sets is a
closure system on A; 2) if C ia a closure system on A, then the mapping
Cc:P(A) — P(A) defined foreach X C AasCcX :=({Y €eC| X CY}
is a closure operator on A; 3) C is algebraic iff C¢ is finitary. We use
interchangeably the exponential and prefix notations for closure operators,
thus X¢ = CcX.

Every closure system C, as a family of subsets ordered under set-
inclusion, is a complete lattice. The infimum of a family {X;}ier C C is
its intersection (1);c; X, and its supremum is erl Xi == Cc(U;e; Xa); its
largest element is A, and its smallest element is Cc(0) = (N C.

A Hilbert system is a pair S = (Fmg, ThS) such that ThS C P(Fmg)
is an algebraic invariant closure system on Fmg. A Gentzen system is a
pair G = (Fmg, ThG) such that ThG C 'P(FmZ) is an algebraic invariant
closure system on Fm . For a Hilbert system S and all T € Th S, [T)ths :=
{U € ThS | T C U} denote a principal filter of the lattice Th S generated
by T. If R is a Hilbert or Gentzen system, we denote Thm R := (| ThR.

We take a Cantor-style approach towards Gentzen rules: we view a rule
not as a “rule”— description of an action, but as a list of all its applications.

A Gentzen sequent is a sequence 5> s of sequents. A Gentzen rule 5+ s
is a set of all substitution instances of the Gentzen sequent 5p s, i.e.,

sks:={o(s5>s)|o:Fms — Fm,}.

. 81y.+:98n
A Gentzen rule sq,...,s, - s can also be written as ———",

s
Let z,y, z be variables. Standard rules (sometimes called structural) are
rules of the form

(Ax) F Tz, >z Axioms
(Ex) I'z,y, > z+ Ty, z, 8> 2 Exchange
(W) IEpy T, z,8py Weakening



(Con) Iz, z, >y Tz, Xy Contraction
(Cut) I'z,Xpy; O>2+T,0,Xpy Cut

where I', ¥, © range over the set of finite, possibly empty, sequences of
variables of Fm,.

Suppose G = (Fmg, ThG) is a Gentzen system. We say that a Gentzen
rule 5+ s holds in G (we write it as § k¢ s) if for every substitution o and
every G-theory T'

o{5} CT = oseT.

3. Closure Relations

Definition 3.1. Let C be a closure system on Fm /. Define
R.C={avaeFm} | (VX eC){a} C X = a€ X}.

Definition 3.2. Let S be a Hilbert system. If C C ThS is an algebraic
closure system on Fmg, then R C is called a general finite closure relation
for S or simply a general closure relation for S. The set of all general closure
relations for S will be denoted by Ger S. O

For every Hilbert system S of type £ there is a distinguished general
closure relation R Th S, which in its turn defines a Gentzen axiomatization
for a Gentzen system:

FR.ThS :={Fara|a>raecR.ThS}.

Proposition 3.3. [1, Theorem 2.2.10]
For any Hilbert system S of type L

(1) R,ThS ={ava|atsa},
(2) R ThS is invariant,
(3) Ger'S can be ariomatized by standard rules and - R ThS

(4) Ger S forms a Gentzen system on Fmg,
(5) RThS = Thm (Ger S).

Closure relations were introduced in [9] as a framework for studying
metatheoretical properties of Hilbert systems. The fact that Ger S form a
Gentzen system was first observed also in [9]. The Gentzen system Ger S
formalizes a metalogic over the Hilbert system S. This metalogic is quite
weak and equivalent in expressive power to the strict universal Horn logic
without equality [4]. Although Ger S is almost trivial, since can be axiom-
atized by only taking all proper sequents of ThS and standard Gentzen



rules, by Proposition 3.3(3), it is proved to be useful as a framework for
working with other kinds of closure relations like full or axiomatic [1].

We make a distinction between an element a and a vector (a) of length
one with this element as its only component. This approach requires the
following set of technical operators, that would allow us smooth transitions
from formulas to sequents and back, and also between the theories of Hilbert
and Gentzen systems. Define for every X C Fm, and every A C sz

>X ={ra|ae X},

Thm A := {a € Fm, |pa € A},

OA:={pacFm;|pac A}

Thus we obtain operators
() : P(Fmc) — P(Fmyg),
Thm : P(Fm}) — P(Fmc),
© : P(Fmf) — P(Fmg).
Mnemonically, the Greek letter ® above stands for “Theorems”.

Reminder. In the following proofs we rely heavily on, so called, “expo-
nential” notation for closures of sets. Namely, if C is a closure system on
some set X, then for all Y C X:

Y€ = (Y)¢:i= Nycrec F-

Definition 3.4. For a Hilbert system S, define the set of aziomatic closure
relations of S as follows:

AcrS :={(>T)®°5 | T € ThS}.
An element of Acr S is called an aziomatic closure relation for S. O

Note, that, in the definition above, the set >T contains sequents of the form
pa, o« € T, where T C Fm/, and we take the closure of > 7T in the family of
Gentzen theories, each of them is a set of sequents itself.

Proposition 3.5. For every Hilbert system S of type L

(1) AcrS C Ger S,

(2) A€ AcrS = A= (8 A)CS,
(3) AcrS = {(>X)%°rS | X C Fm.},
(4) AcrS = {R¢[T)ths | T € ThS}.
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(5) For every X C Fmg,
arac (®EX)8rS «— ac{a}’vX® < X,atso.

Proof. (1) By definition.
(2) If A € AcrS, then A = (>T)%°"S for some T € ThS. Then

DTQ@.AQA — .A=(I>T)G°"$ (_: (eA)GchQAGch = A
= A=(0A)CS,

(3) If A € AcrS, then A = (© A4)%°*S = (>Thm.A)¢"S. For the
other direction, suppose A = (bX )Gc"s, for some X C Fm,. Then A =
(® A)C°rS = (> Thm A)G°" S, because

(D)OACA = (©A)CTS C ACGrS = 4,
() A=(X)®" — pbXCA = p>XCOA
— A= (DX)GCR‘S = (@A)Gcrs.

(4) Suppose A € AcrS. Then, by (3), A = (>T)S°rS, where T =
Thm A € ThS. Let C = [T)1hs- Being a general closure relation for S,
A = R/ D, for some algebraic closure system D C ThS. Then A = R.C,
because

O TEND—BC [Pma—0 — BaCT BaD=u,
(©)ORD=p>(ND)=>T=>(NC)=OR,C= >pT CR,C
— A=(T)S*S CR.C.

©

(5) avae (®ET)%rS = R[T)1ns

«— ac{a}Dms = (Tu{a})S=TVv{a}’ « T,atso. O

N

Lemma 3.6. AcrS is a closure system iff for all families {A;}icr
AcrS

nielAi = (ﬂiez@Ai)G"s-
Proof. It follows directly from the implications

(=) O(NicrAi) = Nie @A

3.5(2) cr Ccr
= (ietAi = (e(nieI-Ai)G S=(ﬂie1@Ai)G e

3.5(3)
(<=) mielAi = (nieleAi) Gord € AcrS. O



4. The Deduction-Detachment Theorem
The following is a standard definition:
Definition 4.1. A Hilbert system S admits a multiterm deduction-

detachment theorem (DDTa) with respect to a finite (may be empty) set
A(z,y) of formulas of two variables if the following holds

(1) z,Az,y) Fs y / A-detachment,
@) —122FsB 4 e, feFm / A-deducti O
F }_S A(a,ﬂ)’ «, Ly -aeauction.

Lemma 4.2. Suppose Acr S for some Hilbert system S is an invariant clo-

sure system, and let A(z,y) be a nonempty set of formulas of two variables.
Then S admits DDTa iff

{zoy}Aers = (0 Az, y)) 5. (¥)

Proof. (=) The proof is straightforward.
(<) The statement follows from the implications:

zby € (b Az, y))AS £ (b A(z, y)) GorS

3§§) e {x}s v (A(x,y))s = z,A(z,y) Fsy. / A-detachment

Taks 28 ap e (pT)Sers = (pT)Aers
— (>A(a, ) G S = (> Ala, B)) ArS (a2 {ab BYArS C (>T)GersS
— A, B) TS 20 I s Afa, ). / A-deduction O
Examples. 1) Consider the normal modal logic S4. Let Th S4, be the

family of sets of modal formulas that are closed under modus ponens and
each contains all theorems of S4. Then, by deduction theorem for S4,

{xby}A”S“F o {D:I) — y}Gch4._ - {E]JI — y}Ach4.__

2) The inconsistent Hilbert system S = (Fmg, {Fm,}) over the lan-
guage £ admits DDT A with respect to any finite set A C Fm/ of formulas,
because

>A AcrS _ >A Gch=Fm+= >y Ach‘
L

3) We also define that the almost inconsistent Hilbert system S =
(Fmg, {0,Fm,}) over £ admits DDT}y, because

{zpy} 2 = Re{0,Fm,} = Fm}f \Fm} = (0)¢S = ()A<r S,
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Theorem 4.3. Let S be a Hilbert system with theorems. Then Acr S forms
a Gentzen system iff S admits a multiterm deduction-detachment theorem.

Proof. In view of the remarks above, it suffices to prove the theorem for
S that is not inconsistent.

(=) Suppose Acr S is a closure system, then there is a closure of the set
{z>y} in AcrS. If {z >y} A°*S = (0) S, then

3.5(5)

{IDy}Ach = (@) Ger S = zpy € (@)Gcrs T }—S v,

so S is either inconsistent or almost inconsistent, a contradiction with the
assumption. Thus {z > y}ATS = (pT)S°rS| for some T € ThS, such
that T' # Thm S, because (0)¢°*S = (>Thm S)G"'S Since {z > y}A°rs is
compact in AcrS, there is a finite subset O C T, such that {z > y}A<rS =
O CerS. Suppose o is any substitution such that o{z,y} = {z,y} and
o(Var\{z,y}) C {z,y} and let A(z,y) = 0O. Since Acr S forms a Gentzen
system, it is invariant under inverse substitutions, therefore

{:L‘Dy}Ach _ {U:L‘DUy}Ach (Go)Ach I (DA(.’L‘ y))Ach

So, by Lemma 4.2, S admits DDTx.

(«=) Suppose S has DDTa, where A # (. A can be viewed as a function
A : Fm% — P(Fm.). Furthermore it can be extended to a function from
Fmf to P(Fm) inductively as follows

A(Pa) = a,
A(O5; 5« 500 P a) i=Alag, on 5 Qp—1 > Al0h; )
= Usea{A(a0,...,an-1>8(an,a))},

and further, in the usual way, to a complex function A : P(Fm}) —
P(Fmg). Thus, for every A € Acr S, the following holds

1) pacA < APe)™® ac ThmA

2) & s pacA LR Thm A, 6,015 Fs o &5 Thm A,a ks Ao, @)
il av Al ,a) CA <= ... &= pA(q,q5P>a)C A

< A(d,alal l>a) C Thm A.

In other words: ara € A < A(avra) € Thm A. (%)



