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Preface

The importance of linear algebra in the undergraduate mathematics
curriculum is now so well recognized that it is hardly necessary to make any
comment on why linear algebra should be taught. For the practical
problem of how to teach it, one has to find an appropriate answer—depend-
ing on the purpose of a given course and the level of the students in it.

The present book is primarily intended for use in a two-semester course
on linear algebra combined with the elements of modern algebra and analy-
tic geometry of n dimensions. It is designed, however, to be usable for a
one-semester course on linear algebra alone or a one-semester course on
linear algebra with analytic geometry. The presentation can be adjusted
to an elementary level following a calculus course or to a more advanced
level with a rigorous algebraic approach. Some specific recommendations
are given in the Suggestions for Class Use.

The following is a brief description of the main content. After an intro-
ductory chapter (Chapter 1) explaining the motivations of the subject
from various points of view, we develop the basic concepts and results on
vector spaces, linear mappings, matrices, systems of linear equations, and
bilinear functions in Chapters 2, 3, and 4. In Chapter 5 we introduce
some basic algebraic concepts (fields, polynomials and their factorizations,
rings, extensions of fields, modules) in order to make it possible to develop
linear algebra in a general algebraic setting. In Chapter 6 the theory of
determinants is treated for matrices over a commutative ring with identity
by way of alternating n-linear functions. In Chapter 7 we discuss minimal
polynomials and characteristic polynomials (including the Cayley-Hamilton
theorem) and their applications (in particular, the Jordan forms); Schur’s
lemma and complex structures are also treated. In Chapter 8 we deal
with inner product spaces and prove the spectral decomposition theorems
for normal transformations, in particular, hermitian, unitary, symmetric,
and orthogonal transformations. As explained in the Suggestions for Class
Use, we indicate various proofs for these theorems in the exercises.

Chapters 9 and 10 provide a linear algebra approach to analytic geome-
try of n dimensions, which is the most efficient way of introducing rigorously
geometric concepts in affine and euclidean spaces. The introductory ma-
terial in Sections 1.3 and 1.4 serves as a preview for the full geometric
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development of linear algebra in these last two chapters. The knowledge
of n-dimensional analytic geometry is basic for the study of topology, alge-
braic geometry, and differential geometry; nevertheless, the author has
often noticed remarkable lack of that basic knowledge among many
students of mathematics.

We have given many examples in order to illustrate important points
of discussion and computational techniques or to introduce the standard
models for the concepts at hand. Exercises at the end of each section are
of the following three kinds:

1. To test the understanding of basic concepts and techniques given in
the text

2. To offer more challenging problems of genuine interest based on the
text material

3. To provide supplementary results and alternative proofs in order to
amplify the understanding of the text material

Problems of the second and third kinds are starred.

After learning the material in this book, a reader will certainly be ready
to proceed to a more advanced study of linear algebra in its most prolific
sense; for example, through the theory of modules to homological algebra,
through the theory of matrix groups to Lie groups and Lie algebras, through
the theory of exterior algebras to differential and integral calculus on differ-
entiable manifolds, through the theory of tensor algebras, projective and
other geometries to differential geometry, through the theory of Banach
and Hilbert spaces to functional analysis, and so on. We should have
liked to include at least an elementary introduction to some of these sub-
jects, but they had to be left out entirely. It is hoped that the present
book will give the reader a balanced background in linear algebra before he
specializes in various directions.

In concluding the preface I should like to acknowledge the invaluable
help I have received from Mr. Carl Pomerance, a student at Brown Univer-
sity, who has critically read the manuseript and suggested numerous im-
provements in the presentation. My thanks go also to Mrs. Marina
Smyth for her expert help in proofreading.
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Suggestions for Class Use

1. For a short course the following material may be used: Sections 1.1,
1.2 (or 1.3); Chapter 2; Chapter 3; Chapter 6; Section 7.1; Sections 8.1,
8.2, followed by one or two theorems selected out of Theorems 8.21, 8.22,
8.25, 8.30 (and their corollaries). For this selection observe the following:

a. Throughout the whole treatment, treat vector spaces and matrices
over the real number field R or the complex number field €. Thus the
notation F will always stand for R or C. In Chapter 6, a commutative
ring with identity is to be replaced by R or C. In Section 7.1, the character-
istic polynomial has to be defined less formally.

b. Instead of (@), one may insert Section 5.1 between Sections 2.2 and
2.3 so that one can treat vector spaces and matrices over an arbitrary
field F.

c. For the proofs of Theorems 8.21, 8.22, 8.25, 8.30 follow the sugges-
tions in suggestion 5.

2. For a short course with emphasis on geometry the following material
may be used: Sections 1.3, 1.4; Chapter 2; Sections 3.1 to 3.3; Sections 6.1
to 6.4; Sections 8.1, 8.2 followed by Theorem 8.30; Chapter 9; Chapter 10.

a. One may treat only vector spaces and matrices over R.

b. For the proof of Theorem 8.30, follow the suggestions in 5.

8. A more satisfactory treatment of linear algebra with the elements of
modern algebra can be given by Chapters 1 to 8.

a. Sections 1.3, 1.4 may be omitted, although it is always recommended
to illustrate various concepts on vector spaces and linear transformations
by using geometric interpretations.

b. For less emphasis on algebra, one may introduce only the material
in Chapter 5 that is absolutely necessary for the development of linear
algebra as the need arises.

4. There are various ways of arriving at the spectral theorems for normal
transformations (matrices), in particular hermitian and unitary transforma-
tions (matrices) in the complex case and symmetric and orthogonal trans-
formations (matrices) in the real case. They are developed along the
following lines in the main text.
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a. Theorem 8.19 (complex normal) and Theorem 8.20 (real normal)
are based on Theorem 7.8 (on the minimal polynomial). Theorem 8.21
(hermitian) and Theorem 8.22 (unitary) follow immediately by using the
results in Section 8.4.

b. Theorem 8.25 (symmetric) follows from Theorem 8.20 as soon as
Theorem 8.24 (that a symmetric transformation has the real characteristic
roots) is proved, and this is proved in two ways.

¢. Theorem 8.30 (orthogonal) is proved first for the two-dimensional
case and then by using the argument on the minimal polynomial (Theo-
rem 7.5).

5. For alternative proofs of the spectral theorems we suggest the follow-
ing:

a. Theorem 8.21 (hermitian) can be proved as in Exercise 8.4, num-
ber 15 (thus before introducing normal transformations and without refer-
ence to the minimal polynomial).

b. Theorem 8.22 (unitary) can be proved as in Exercise 8.4, number 16,
in the same way as (a).

¢. Theorem 8.19 (complex normal) can be proved as in Exercise 8.5,
number 8, and Theorem 8.20 (real normal) as in Exercise 8.5, number 9.

d. Theorem 8.25 (symmetric) can be proved as in Exercise 8.16,
number 18, once the existence of an eigenvalue (a real characteristic root)
is established (as in Exercise 8.6, number 16 or 17, without reference to
hermitian transformations).

e. Theorem 8.30 (orthogonal) can be proved as in Exercise 8.7, number
8 (by using Proposition 8.16) or as in Exercise 8.7, number 9 (by using
Theorem 8.25).

f. There are other variations; see Exercises 8.5, numbers 7 and 15,
Exercise 8.6, number 19, and Exercise 8.7, numbers 12 and 13.

6. Finally, a word about the terminology used in the text. We assume
familiarity with the notation concerning sets, mappings, and equivalence
relations. We also assume that a reader is acquainted with the principle
of mathematical induction. Since these ideas are now introduced at an
early stage in many courses in calculus, we shall give only a very concise
explanation of the terminology in the Appendix.
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1 Introduction

The purpose of this chapter is to motivate the study of linear algebra.
We shall show how the concepts of vector spaces, linear mappings, and
matrices arise naturally from various types of problems in mathematics.
Discussions are rather informal and are not to be considered part of a
systematic development (which starts in Chap. 2); Definition 1.3, on matrix
multiplication, and Definition 1.5, on identity matrices, will be referred
to later.

1.1 SYSTEMS OF LINEAR EQUATIONS

To start with an easy example, we recall how we can solve a system of two
linear equations in two unknowns:

ar + by = u,

1.1
(.1) cx + dy = v,

where a, b, ¢, d and u, v are given (real) numbers and z, y are unknowns.
We assume that a, b are not both 0 and ¢, d are not both 0. Multiplying
the first equation by d and subtracting from it b times the second equation,
we obtain

(ad — be)r = du — bo.
Similarly, by eliminating z, we obtain
(ad — bc)y = av — cu.
If ad — be # 0, then we find the solution
du — b av — cu
“ad—bc VT ad—be
In the case where ad — bc = 0, we proceed as follows. Ifc = 0,letk = a/c,
so that a = ck. Substituting this in ad = bc, we have cdk = ¢b. Since
c#0,wegetb=4dk. If c =0, then d > 0 and we let £ = b/d and still

obtain @ = ck. If k = 0, we have a = b = 0, contrary to the assumption.
Thus we see that there is &k 5 0 such that

a=ck and b = dk.

x
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Multiplying the second equation of (1.1) by &, we have

ckx + dky = kv,
that is, ax + by = ko.
If w = kv, then this is the same as the first equation of (1.1). In this case
the system (1.1) has infinitely many solutions (z,y), which are determined
from the first equation by giving arbitrary values to z (or y). On the
other hand, if u # kv, then (z,y) satisfying the second equation does not
satisfy the first equation; that is, the system (1.1) has no solution at all.

Summing up, we have:

1. If there is no number k& 5 0 such that @ = ck, b = dk, then (1.1)
has a unique solution.

2. If there is a number £ # 0 such that a = ¢k, b = dk, and u = vk,
then (1.1) has infinitely many solutions.

3. If there is a number k£ # 0 such that ¢ = ck, b = dk but u == vk,
then (1.1) has no solution at all.

A geometric interpretation is the following. Each of the equations in
(1.1) represents a straight line on the plane with the usual coordinate
system. In case 1, two straight lines are distinct and meet at one point.
In case 2, two lines coincide. In case 3, two lines are distinct but parallel
to each other.

We shall now consider a more general system of linear equations —a

system of m linear equations in n unknowns z;, . . . , Z,—
auy + Gty + ¢ ¢ -+ GTa = U,

(1 2) a1 + anty + ¢ ¢ -+ GenTn = Ug
.................... ,
AmZ1 + Ames + * -+ AQunln = Um,y

where the essential data of the system are the mn coefficients a;;, 1 < 7 < m,
1 £j < n, and the numbers u;, 1 <7 < m. We may express them by
writing

Uy
an Qe Q1n Uz
Q21 Q22 Q2n ;

Am1  Am2 Qmn
Um

On the other hand, the set of unknowns z;, 1 < z < n, can be written as

21
T2

Tn
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Definition 1.1

A display of mn numbers a;; in the form above is called an m X n matriz;
we denote this matrix, for example, by

an Qe Q1n
Aof e
Am1  Om2 Amn

or, more briefly, by
A=[aii]: IS'LSm,IS]Sn

Similarly, we set

U1 I

Uz 22
u= ’ X =

Um Zn

Although u is an m X 1 matrix and x an » X 1 matrix, it is more common
to say that u is an m-dimensional vector and x an n-dimensional vector.

Definition 1.2
Two m X m matrices
A = [ai] and B = [bi]

are said to be equal (written A = B) if a;; = bs; for every pair (¢,7), where
1<7<mand1<Lj< n
Similarly, two m-dimensional vectors

y = [yi and z = [z]
are equsl (y = z) if y; = z; forevery ¢, 1 <1 < m.
System (1.2) is thus described by an m X n matrix A and an m-dimen-

sional vector u; the set of unknowns is expressed by an n-dimensional
vector x. We shall even write system (1.2) in the form

(1.3) Ax = u.

This matrix notation for system (1.2) will be justified when Ax on the left-
hand side acquires the meaning of a ‘“product’” of the matrix A and the
vector x. For this purpose we shall define matrix multiplication in the
following way.
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Definition 1.3

Given an m X n matrix A = [a:], 1 <1 <m,1<j<n,andann X p
matrix B = [ba], 1 <j<n,1<k<p, we form an m X p matrix C =
[cal,1 <7 <m,1 <k < p, where

(1.4) ce = D aibp, 1<i<m1<k<p.
i=1

The matrix C is called the product of A and B and is denoted by AB.

In the special case where B is an n X 1 matrix, namely, an n-dimensional
vector [b;],1 < j < n, we have anm X 1 matrix, namely, an m-dimensional
vector, as the product AB = [¢;], 1 < ¢ < m, where

(1.4") ci= 2, aib;, 1<i<m
=1
Example 1.1
2 1[-1 4] _[2t-1)+10) 200 +1(-2] _[-2 6],
1 3|] 0o —2|T|1(-1)+30) 14)+3(-2)| [-1 -2
2 -1 1|2 _[2®+neEn+iw] _[15],
3 -2 4| T, [T [8G) + (-2) (-1 +4@)]| T |33

Now (1.3) acquires the following meaning: The product Ax is equal to
the vector u; in fact,

1.3) Zla;jxj =u, 1<i<m,
=

which is exactly the same as system (1.2).
Let us first consider a homogeneous system:

(1-5) Z aijxT; = 0, 1<z m,

=1

which is a special case of (1.3’) where all u’s are 0. Writing O for the
m-dimensional vector (called the m-dimensional zero vector)

0

0
we have the matrix notation for (1.5) in the form

(1.5") Ax = 0.
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This system has an obvious solution z; = z» = - - - = z, = 0, namely,
0
x=|-1| n-dimensional zero vector.
0

This solution is called the trivial solution of (1.5’); it may be the only
solution, or there may be other solutions. At any rate, consider the set S
of all solutions [namely, n-dimensional vectors satisfying (1.5")].

If x = [z;] and X’ = [z}] are in S, then the vectors

1 + -’17{ CZ1
zs + a3 s

and ) ¢ arbitrary,
ZTn + 7, CZn

which we denote by x + x’ and cx, respectively, are also solutions. Thus
the set of solutions S has the property that x,x’ € S implies x + x’ € S
and cx € Sfor any number c.

Definition 1.4

Let x = [z;] and X’ = [z;] be two n-dimensional vectors. The sum
x + x’ is the n-dimensional vector

z + 2

Zn + 2n
and the scalar multiple cx, where c is an arbitrary number, is the n-dimen-
sional vector
CZx1

CTn

In connection with the sums and scalar multiples of vectors, let us
observe that matrix multiplication has the following two properties:

(1.6) A(x + x') = Ax + Ax/,
1.7) A(cx) = c(Ax),
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where A is an m X n matrix and x, X’ are n-dimensional vectors. In fact,
the sth entry of the vector A(x 4+ x’) is equal to

n n n
Z:l aij(z; + 25) = Z‘i @iz + 2:1 a5,
I= j= Jj=

which is equal to the 7th entry of Ax 4+ Ax’. Property (1.7) can be verified
in a similar way.

The assertion on S which we made above can be considered as a conse-
quence of (1.6) and (1.7);infact, if Ax = Oand Ax’ = 0, then

Ax+x)=Ax+Ax'=04+0=0
and A(cx) = cAx = c0 = 0,

showing that x + x’ and cx are solutions.

Let us now consider the system (1.3), called an tnhomogeneous system if
u % 0; we call (1.5) the homogeneous system associated with (1.3). If
x and x’ are solutions of (1.3), that is,

Ax =u and Ax' = u,
then, denoting x’ 4+ (—1)x by x’ — x, we have
AR —x) =AE + (—1)x) = AX' + (—1)Ax’
=Ax —Ax=u—u=0,
by virtue of (1.6) and (1.7). This shows that x’ — x = y is a solution of

(1.5). Conversely, suppose that x is a solution of (1.3) and y a solution of
(1.5). Then x’ = x + y is a solution of (1.5), because

Ax =Ax+y)=Ax+Ay=u+0=nu

We have seen that an arbitrary (or general) solution of system (1.3) is
obtained from any particular solution by adding an arbitrary (or general)
solution of the associated homogeneous system (1.5).

In order to find a solution of (1.3), one will, of course, try to reduce the
system to a system of a simpler form which has the same solutions. One
employs a number of elimination steps, the simplest form of which we
recalled for system (1.1). One of the processes consists in multiplying one
equation by a certain number and adding it to another equation. For
example, we replace the jth equation of (1.3) by

(can+ap)rs+ - - -+ (Cain + Qjn)Ta = cu; + u;.
For the corresponding matrix A, this process will change the jth row
@ ajp - -+ ajal

into [caan+ an can+ap -+ CQin+ am]
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with the accompanying change of u into

U1

Uj—1
cu; + Uj
U j+1

Um

It is obvious that this sort of operation does not change the solutions.
same thing is true of multiplying one equation by a nonzero number, which
is the other kind of process one uses for solving a system of linear equations.

This indicates that the practical method of solving a system of linear
equations can be described neatly as a sequence of certain operations per-

formed on the matrix A and the vector u.

EXERCISE 1.1
1. Compute the following matrix products:

o[ e o L

= N

3 1 2 |'1 -1 0 1 -1 473
¢ |1 3 —-1];3 2 5]|; @ (2 3 3|2
4 5 o0]JLr 3 4 1 0 1]l1

2
() 1 -1 1]|1]-
3

2. Are the following products defined?

17] 9
2 1
(a) [ ][0 ; () [1]11 = | 1].
1 -3 2_f 3

3. Solve the following systems of linear equations:

(a) zt+y+z=1, ) z+yt+z=1,
3z — 2y + 2z = 3, 3z — 2y + 2z =3,
2 —y—z=—1. S5y +z=4.

1.2 DIFFERENTIAL EQUATIONS
Let us consider a differential equation
d*x

1.8 — =
(1.8) dt2+x 0,

1
-1
5

7

The

|



