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Preface

Most aerospace, mechanical, and civil engineering graduate programs in major
U.S. universities require a series of courses in the general area of solid me-
chanics. The details of these courses vary from school to school and program
to program. At one end of the spectrum, some give preference to courses that
emphasize unified and exact treatment of solid and fluid mechanics, often re-
ferred to as modern continuum mechanics. At the other end, a more traditional
approach is taken, whereby an approximate, linear treatment of engineering
problems is emphasized.

It has become apparent over the years that neither of the two extremes is
appropriate for modern engineering programs. Most engineering students find
the continuum mechanics approach too “heavy” for their taste and training,
while the classical linear approach denies them the basic knowledge and insight
that are essential for facing the challenges of the future. It would certainly be
best if both approaches could be taught in two complete sets of courses. How-
ever, this can be done only under a Ph.D. degree program in mechanics or un-
der a major field of specialization in solid mechanics, where the number of
other required courses can be adjusted. In recent years, such specialized pro-
grams have been abandoned in favor of more traditional, discipline oriented
programs—e.g., aerospace engineering, mechanical engineering, and civil en-
gineering. The major field of specialization in mechanics of solids is also be-
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viii Preface

coming somewhat rare, resulting in the need for a new approach to the teach-
ing of solid mechanics, whereby the student is given the opportunity to learn
the essential elements of both approaches in a time frame that is reasonable un-
der his or her program of study.

As a response to these changes, graduate courses in solid mechanics have
been redesigned in many universities in recent years. At the University of
California at Los Angeles (UCLA), a sequence of courses has been created.
The first course deals with the fundamental principles of continuum mechan-
ics; the treatment is exact but restricted to elastic solids only. The approximate
linear theory is also introduced in this course as a special case. The second
course is devoted entirely to the solution of relevant linear problems, with em-
phasis on analytical techniques. These are followed by a series of specialized
courses on plasticity, wave propagation, fracture mechanics, etc.

This book is based on the first two of these courses. Both authors have
drawn upon their experience in teaching earlier versions of similar courses for
over 15 years. The material has been used by a fairly large number of students
and scrutinized by a number of faculty members with interest in solid mechan-
ics. We hope that the book will be received enthusiastically by students, fac-
ulty, and others with a similar interest.

Chapter 1 contains a review of the theory of elasticity as it is normally
taught in undergraduate courses. The discussions are quite terse, since more
detailed and advanced treatments of the various topics reviewed here are given
in later chapters. The main purpose of including the review is to provide the
motivation and setting for the more advanced treatment that follows.

A full appreciation of the theoretical treatment of solid mechanics re-
quires a good knowledge of mathematics. Since the mathematics preparation
of the readers of this book is likely to be quite varied, it was deemed necessary
to make the book as self-contained as possible by including most of the rele-
vant intermediate-level mathematics. This is done in Chapter 2. The topics in-
clude Cartesian tensors and certain integral theorems. The treatment is rigor-
ous but not exhaustive.

Chapter 3 deals with kinematics of deformation. A number of exact mea-
sures of deformation are introduced, and their geometrical interpretations are
given with illustrative examples. Linear approximations leading to the classical
infinitesimal strains are carefully discussed.

The balance laws of continuum mechanics are presented in Chapter 4.
The concept of stress and its various measures are also introduced in this chap-
ter. The equations of motion and the energy equation are derived in their exact
forms in the presence or absence of thermal effects. The linearized forms of
these equations are obtained as special cases.

Chapter 5 deals with constitutive equations for elastic solids. The general
rules of constitutive theory are stated in simple terms, and the exact forms of
these equations for isotropic solids are derived. The linear equations for
isotropic as well as anisotropic solids are obtained as special cases. The linear
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constitutive equations for the overall behavior of fiber-reinforced composites
are also presented in this chapter.

Exact solutions of a number of nonlinear and linear elastic problems is
presented in Chapter 6. For the nonlinear case, consideration is restricted to
the simplest possible problems that bring out the essential features of nonlin-
earity. For the linear case, some general theorems are discussed first, followed
by the exact solutions of a number of simple but useful problems.

Chapter 7 is devoted entirely to solution techniques for linear elastic
problems. Typical two- and three-dimensional boundary-value problems are
considered in detail.

A brief exposition of linear elastodynamics is presented in Chapter 8.
The main features of elastic waves are discussed through simple illustrative ex-
amples.

A review of matrix algebra is given in the appendix. Results that are
needed for the discussions in the main body of the book are presented without
proof.

We have made a strong effort to present an account of the exact theory of
deformation in a form that can be easily understood by most first-year graduate
students as well as by others with a baccalaureate degree from a U.S. univer-
sity or its equivalent. The treatment is reasonably self-contained in that no
significant prior knowledge of solid mechanics or of tensor analysis is needed,
although some familiarity with elementary strength of materials can be helpful
in appreciating the finer points of the exact theory. Complex variables are used
in Chapter 7 to solve a few problems; readers who are not comfortable with
this technique can omit this small section without any significant loss, since it
is shown that these problems can be solved by other methods.

We have selected the material of the book with great care in order to
keep its size relatively small without sacrificing the essential features of the
subject. The problem sets have been deliberately kept small, with the hope that
the students will have sufficient time to work them all thoughtfully. We
strongly recommend that they be supplemented by additional problems of in-
terest to the instructor and students.

There are a number of weaknesses; most of these turned out to be un-
avoidable. First, the notations for tensors and other mathematical quantities
did not come out to be as uncluttered and consistent as we had originally hoped
them to be. This is due primarily to the fact that the theoretical treatment of
solid mechanics requires the introduction of an enormous number of variables,
and one eventually tends to run out of symbols! There is also the need to con-
form to traditions and customs in the use of symbols. In spite of these
difficulties, the notations used in the book should be easy to follow and should
not cause any confusion.

A second weakness is the fact only a few problems of nonlinear elasticity
have been included in Chapter 6. Certainly, the inclusion of a number of other
relevant problems would have been possible. However, this would require a
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fuller exposition of the exact theory than was felt appropriate for this book. As
explained earlier, the objective here is to introduce the students to the most es-
sential features of the nonlinear theory.

Finally, several important topics involving inelastic effects (e.g., vis-
coelasticity, plasticity) have not been included. Students interested in these
special topics should be able either to take such courses or to read up on their
own after they have mastered the material included in the book.
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A Review
of the Elementary Theory
of Elasticity

In this chapter we present a brief exposition of the linear theory of elasticity as
it can be found in most undergraduate texts. This will set the stage for more
advanced treatment, which is the primary objective of this book.

1.1 STRAIN

To begin with, let us consider a deformation that is independent of one Carte-
sian coordinate, say z, and parallel to the xy-plane. This type of deformation is
known as plane strain. We shall return to the problem of three-dimensional de-
formation after we have completed our study of deformation in a plane.

Let a point P with coordinates (X, Y) in the undeformed state be dis-
placed to the point P’ with coordinates (x, y) due to the deformation of the
body (Fig. 1-1). The vector displacement of the point P has Cartesian compo-
nents (U, V), where

U=x-X, =y-Y (1.1)

It will be assumed that the displacement components are continuous and
twice differentiable functions of X, Y or x, y. Consider a small rectangular ele-
ment PORS in the undeformed state, with sides (dX, dY) parallel to the coor-
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P’
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Figure 1-1 The displacement vector.

dinate axes (Fig. 1-2). Let the points P, O, R, and S move, respectively, to
P', Q',R’', and §' after deformation. The coordinates of Q relative to P are
(dX, 0) and the coordinates of Q' relative to P’ are (dx, dy), where

0
dx=dX+dU=dX+%dX (1.2a)
1%
dy = dV —adX (1.2b)
We thus have
aU 2 av 2]1/2
’ ’ = + + s
P'Q [(dX X dX) (ax dX) ]
oU
~ + —dX
axX axd

where we have neglected the squares and higher powers of (dU/0X) and
(dV/3X). Therefore, the increase in length per unit length of the line PQ, de-
noted by e, is given by

_ PIQI — PQ _ ﬂ

= PO = 3x (1.3a)
Similarly, the increase in length per unit length of the line PS is

v
€yy = 5" (13b)

€xx
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Figure 1-2 Deformation of line elements dX and dY.

The quantities e, and e,, are known as normal strains.
If vy, denotes the angle that P'Q' makes with the x-axis, we have (from
Fig. 1-2)
(an vi = (0V/aX)
YT 1T+ (GU/ax)
Assuming that the angle vy, (measured in radians) is small and neglecting small
quantities of the second and higher orders in (dU/0X) and (dV/0X), we find

oV
N = oy (1.4a)
Similarly, the angle vy, of Fig. 1-2 is
aUu
Y, = P (1.4b)

Let 2e,, denote the decrease in the angle between the two lines PQ and
PS, which are parallel to the x- and y-axes, respectively, before deformation.
Equations (1.4) then yield
U oV

s = + = — 4+ — .
2e, Yt Y2 Y ax (1.5)
The quantity e,, is the shearing strain. The symbol y,, = 2e,, is often used to
denote the shearing strain in engineering applications.

Relations (1.3) and (1.5) are obtained under the assumption that the dis-
placement derivatives are small compared to unity. The theory of elasticity in
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which the products and squares of derivatives of the displacement components
with respect to the space coordinates are neglected in comparison with the
derivatives themselves is known as infinitesimal or linear theory. In this chap-
ter we shall confine ourselves to the linear theory only.

We have seen that in the two-dimensional problem of plane strain, there
are two normal strains, e, and e,,, and one shearing strain, e,,. In the general
case of three-dimensional deformation, there are three normal strains, e, ey,
e.., and three shearing strains, e,., €., and e.,. They are related to the displace-
ment components U, V, and W through the equations

_ v _ev W
X 2 T oy ==

1 (oW oU 1
€y = l<a_v =+ aW) = %‘sza €y = _(_ * ) = 5 Yxz (16b)

(1.6a)

€xx

2\6z ' oy 2\ax * oz
1/oU  av) 1
i e e 2L s 1.6
S 2<ay ax) 2 {1.60)
1.2 STRESS

A solid may be acted upon by two types of external forces: body forces and
surface forces. Body forces act upon every volume element of the solid. Sur-
face forces, in contrast, are forces that act upon every element of the surface of
the body. In addition to the external forces, there are internal forces, which
arise from the mutual interaction between various parts of the body.

Let a deformable solid be in its unstrained state with no forces acting on
it and let a system of forces be then applied to it. On account of the application
of these forces, the solid becomes deformed, and a system of internal forces is
set up within it to oppose this deformation. These internal forces give rise to
what is known as stress within the solid.

Let us consider a part of the solid occupying a region V enclosed by the
surface S in the deformed state. The boundary S is acted upon by surface forces
caused by the action of the material exterior to V on that within V. It will be
assumed that these surface forces are continuously distributed over S. A suit-
able measure of such forces is their intensity, i.e., the amount of force per unit
area of the surface on which they act.

To specify the stress acting on a small area 8§ at a point P on S, we as-
sume that the forces acting across this elementary area, due to the action of the
material outside V, can be reduced to a single force 8 p (Fig. 1-3) and that the
limit

. op
uT 5s s
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y

Figure 1-3 The surface force.

exists. This limit is known as the traction, or the stress vector, on 8S at the
point P.

In general, the traction is inclined to the area 8S on which it acts, and we
can resolve it into two components: a normal stress perpendicular to the area
and a shearing stress acting in the plane of the area 8S. Alternatively, we can
resolve the traction into its Cartesian components. Let the outward drawn unit
normal to 6S be n and the x-, y-, and z-components of the traction acting on &S
be denoted by ¢\, ¢\, and t{", respectively.

Consider a small cubic element with sides parallel to the coordinate axes
(Fig. 1-4). The components of the traction acting on the face with normal in
the positive x-direction are #{", #{", ¢\, We use the notations

t(xl) = Ox, tﬁ'” = Oy, ti‘” = Ox: (18)

Similarly, the components of the traction acting on the face of the cube with
normal in the positive y-direction are o,x, 0y, 0,., and the components of the
traction acting on the face of the cube with normal in the positive z-direction
are o, 03y, 0. Thus the first suffix indicates the direction of the normal to the
face and the second suffix indicates the direction of the traction component. In
all, we have nine components, 0., 0, * * - , 0=, Which are known as the com-
ponents of stress. We can display these components in the form of the matrix:

Ox Oxy Ox:
Oy Oy Oy
Oz« a-z_v O;;

(1.9)
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Figure 1-4 Stress components.

Obviously the components o, 0,,, 0. represent normal stresses and the com-
ponents O, Oy, O, O, Oy, O-, represent shearing stresses.

We use the convention that the normal stress on a surface is positive
when it produces tension and negative when it produces compression of the
material within the element. The positive direction of a component of the
shearing stress on any face of the cubic element is taken in the positive (nega-
tive) direction of the coordinate axis if a tensile stress on the same face is in the
positive (negative) direction of the corresponding axis. This rule is illustrated
in Fig. 1-4 by indicating the positive directions of the components o.., o.,, and
o for the two faces of the cubic element with normals in the positive x-direc-
tion and the negative x-direction, respectively.

1.3 EQUATIONS OF EQUILIBRIUM

Consider the equilibrium of a small rectangular parallelepiped with its center at
P(x, y, z) and edges x, 8y, 6z parallel to the coordinate axes (Fig. 1-5). The
centers of the six faces of the parallelepiped are at the points

(x £ 16x,y, 2), (x,y = 36y, 2), (x,y,z £ 382)
If the components of stress at P are 0, 0y, - * * , 0=, then the compo-
nents of the traction acting on the face with its center at (x + 8x/2, y, z) are
1 9o« 1 0oy, 1 0.
Uu+__-6x~ 0',n»+"‘_"5X, o-xz+_ "6X
’ 2 ox : 2 0x 2 0x

since the outward normal to this face is in the positive x-direction. The compo-
nents of the traction acting on the face with its center at (x — 8x/2, y, z) are

1 oy, 1 o 1 o,
(U" 2 ox 6X>' (U“ 2 ox 6x), <Ur2 2 ox 8x)




