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Introduction

This monograph is devoted to the study of boundary value problems for equations
of viscous gas dynamics, named compressible Navier-Stokes equations. The math-
ematical theory of Navier -Stokes equations is very interesting in its own right, but
its principal significance lies in the central role Navier-Stokes equations now play
in fluid dynamics. Most of this book concentrates on those aspects of the theory
that have proven useful in applications.

The mathematical study of compressible Navier-Stokes equations dates back
to the late 1950s. It seems that Serrin [121] and Nash [92] were the first to consider
the mathematical questions of compressible viscous fluid dynamics. An intensive
treatment of compressible Navier-Stokes equations starts with pioneering papers
by Itaya [60], Matsumura & Nishida [87], Kazhikhov & Solonnikov [63], and Hoff
[56] on the local theory for nonstationary problems, and by Beirao da Veiga [11, 12],
Padula [103], and Novotny & Padula [98, 99] on the theory of stationary problems
for small data. A global theory of weak solutions to compressible Navier-Stokes
equations was developed by P.-L. Lions in 1998. These results were essentially
improved, sharpened and generalized by E. Feireisl. We refer the reader to the
books by Lions [80], Feireisl [34], Novotny & Straskraba [101]|, and Feireisl &
Novotny [37] for the state of the art in the domain.

Although the theory is satisfactory in what concerns local time behavior
and small data, many issues of global behavior of solutions for large data are far
from being understood. There are a vast range of unsolved problems concerning
questions such as regularity of solutions to compressible Navier-Stokes equations,
the theory of weak solutions for small adiabatic exponents, existence theory for
heat conducting fluids. However, these problems will not be our primary concern
here. We are mainly interested in three problems that we describe briefly below.

Exzistence theory. This issue is important since no progress in the mathematical
theory of Navier-Stokes equations can be made without answering the basic ques-
tions on their well-posedness. We focus on existence results for the inhomogeneous
in/out flow problem, in particular the problem of the flow around a body placed in
a finite domain. Notice that the majority of known results are related to viscous
gas flows in domains bounded by impermeable walls. In/out flow problems are
still poorly investigated. We refer to the paper by Novo [93], where an existence
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theorem was proved for constant boundary data, and recent work by Girinon [52],
where the existence of a weak solution was established for convex flow domains
with inlet independent of the time variable. We give an existence result in the
general nonstationary case without imposing restrictions on the geometry of the
flow domain and the behavior of boundary data. In contrast, the question of ex-
istence of global weak solutions to the stationary in/out flow problem remains
essentially unsolved. Local strong solutions close to the uniform flow have been
studied by Farwig [29] and Kweon & Kellogg [69, 72, 73]. With applications to
shape optimization theory in mind, we consider the problem of the flow around a
body placed in a bounded domain for small Mach and Reynolds numbers.

Stability of solutions with respect to nonsmooth data and domain perturbations.
Propagation of rapid oscillations in compressible fluids. In compressible viscous
flows, any irregularities in the initial and boundary data are transferred inside
the flow domain along fluid particle trajectories. The transport of singularities in
viscous compressible flows was studied by Hoff [56, 57]. In this book we discuss the
propagation of rapid oscillations of the density, which can be regarded as acoustic
waves. The main idea is that any rapidly oscillating sequence is associated with
some stochastic field named the Young measure (see Tartar [128] and Perthame
[106] for basic ideas). We establish that the distribution function of this stochastic
field satisfies a kinetic equation of a special form, which leads to a rigorous model
for propagation of nonlinear acoustic waves. Notice that oscillations can be induced
not only by oscillations of initial and boundary data, but also by irregularities of
the boundary of the flow domain.

Domain dependence of solutions to compressible Navier-Stokes equations. This is-
sue is important because of applications to shape optimization theory. The latter
is a branch of the general calculus of variations which deals with the shapes of
geometric and physical objects instead of parameters and functions. The classic
examples of shape optimization problems are the isoperimetric problem and New-
ton’s problem of the body of minimal resistance. We refer to [126], [18], [21], [46],
[54], [62], [91] for a general account of the theory and the relevant references.
The first global result on domain dependence of solutions to compressible Navier-
Stokes equations is due to Feireisl [33], who proved that the set of solutions to
compressible Navier-Stokes equations is compact provided the set of flow domains
is compact in the Kuratowski-Mosco topology and their boundaries have “uni-
formly small” volumes. We prove that the compactness result holds true if the
set of flow domains is compact in the Kuratowski-Mosco topology, and also that
some cost functionals, such as the drag and the work of hydrodynamical forces,
are continuous in this topology. With applications to shape optimization in mind,
we consider the shape differentiability of strong solutions and give formulae for
the shape derivative of the drag functional. Let us also mention that in the incom-
pressible case the shape differentiability of the drag functional was considered in
[14], [15], [123]. Finally, we refer to Mohammadi & Pironneau [90] for the relevant
references in applied shape optimization for fluids.
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We also discuss the mathematical questions which are not related directly
to Navier-Stokes equations. Among them are the theory of boundary value prob-
lems for transport equations and the problem of vanishing viscosity for diffusion
equations with convective terms.

The basic idea of the book is to give as more details as possible and to
avoid using complicated mathematical tools. In particular, we do not use compen-
sated compactness results, the Bogovski lemma, or semigroup theory. Only the
undegraduate background in mathematical analysis and elementary facts from
functional analysis are assumed of the reader.

The material is organized in twelve chapters and an appendix. We start in
Chapter 1 with a review of standard topics from real and functional analysis.
The chapter includes, mainly without proofs, basic facts on measure and integral,
functional analysis, elliptic and parabolic equations. We focus on measure theory,
since the notion of Young measure is widely used throughout the book. Most of the
material will be familiar to the reader and can be omitted. Possible exceptions are
Section 1.3.1 containing a general formula for integration by parts in the Lebesgue-
Stieltjes integral, Section 1.4 where the notion of Young measure is introduced,
and Sections 1.1.2 and 1.5 devoted to interpolation theory and Sobolev spaces.

In Chapter 2 we collect the basic physical facts concerning compressible
Navier-Stokes equations including the formulation of equations in a moving co-
ordinate frame and formulae for the hydrodynamical forces and the work of these
forces. In Chapter 3 we give the mathematical formulation of the main boundary
value problem for compressible Navier-Stokes equations and discuss the notions of
weak and renormalized solutions.

Chapters 4-11 can be considered as the core of the book. Our considerations
are based on the approach developed by P.-L. Lions and E. Feireisl. The main
ingredients of their method are Lions’s result on weak continuity of the effective
viscous flux, LP-estimates of the pressure function, and the theory of the oscilla-
tion defect measure developed by E. Feireisl. Some of these results are of general
character and hold true for any system of mass and impulse-momentum laws.

We assemble all such results in Chapter 4, where we consider the system of
balance laws which is formulated as follows. Assume that a medium occupies a
domain Q C R?, d = 2,3. We want to find a velocity field u : Q x (0,7) — R¢
and a density function ¢ :  x (0,7) — R™" satisfying the momentum and mass
balance equations

Ot(ou) +div(ou®u) =divT + of in Q x (0,T), (0.0.1)
0,0+ diviou—g) =0 in Q x (0,7), .
where f, g are given vector fields, and T is the stress tensor. The class of such
systems includes compressible Navier-Stokes equations and their numerous mod-
ifications. At this stage we do not specify the form of the stress tensor and do
not impose boundary and initial conditions on the density and the velocity. In-
stead we assume that they satisfy some integrability conditions. In Chapter 4
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we consider the basic properties of solutions to equations (0.0.1). The results we
present include elementary facts on integrability of functions with finite energy
(Section 4.2), and the standard material concerning weak compactness properties
of the impulse momentum gu and the kinetic energy tensor gu ® u (Section 4.4).
Section 4.6 is more important: we prove there the general form of P.-L. Lions’s
result on weak continuity of the viscous flux, which is the most important result
of the mathematical theory of viscous compressible flows.

Chapter 5 deals with existence theory for the nonstationary in/out flow
boundary value problem for compressible Navier-Stokes equations, which are a
particular case of system (0.0.1) with the stress tensor of the form

T=Vu+ (Vu)" + (A —1)divul — p(p)I, (0.0.2)

where ) is some constant, and p(p) is a monotone function such that p(g) ~ ¢ at
infinity. The in/out flow problem for equations (0.0.1)—(0.0.2) can be formulated
as follows. Let a vector field U : © x (0,7) — R? and a nonnegative function
0 : 2% (0,T) — R be given. We want to find a solution of (0.0.1)—(0.0.2)
satisfying the initial and boundary conditions

u=U, p=9x ondQx{t=0},

0.0.3
u=U ondx(0,7), 0=0x oOn i, ( )

where the inlet ¥, is the open subset of 9Q x (0,7T") which consists of all points
(z,t) such that the vector U(z, t) points to the inside of Q2 x (0, T'). The peculiarity
of this problem is that we deal with the boundary value problem for the mass bal-
ance equations. In Chapter 5 we prove that for the adiabatic exponent v > 2d and
smooth initial and boundary data satisfying the compatibility conditions, the prob-
lem has a renormalized solution. We follow the multilevel regularization scheme
proposed by E. Feireisl, but with a different regularization technique. The main
ingredient of our method is the estimates of the normal derivatives of solutions
to singularly perturbed transport equations (Section 5.3.8). These estimates are
nontrivial and their derivation is based on Aronson-type inequalities for the heat
kernels of diffusion equations with convective terms. Another essential ingredient
of our method is the systematic use of Young measure theory.

Chapter 6 is of technical character. There we prove that for the solution
to problem (0.0.1)—(0.0.3) constructed in Chapter 5, the pressure p(p) is locally
integrable with some exponent greater than 1.

In Chapter 7 the results obtained are extended to the range of adiabatic
exponents (3/2,00) common for homogeneous boundary value problems. In this
chapter we propose a new approach to the boundary value problems with fast
oscillating boundary data and develop a theory of such problems based on the
kinetic formulation of the governing equation. We deal with the sequence of solu-
tions (U, g¢), € > 0, to problem (0.0.1)—(0.0.3) with regularized pressure functions
of the form p. = p(g) + 0", and the initial and boundary data ¢f,. We assume
that the sequence g is only bounded, but need not converge to any limit in the
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strong sense. In particular this class of data includes rapidly oscillating functions
of the form
xz t
=Flz,t,—, - ),
Coo ( "€ 6)

where F'(x,t,y,T) is a bounded function, periodic in y and 7. Under these assump-
tions, the sequence (0., ue,p(ge)) converges only weakly to some limit (g, u,p) as
e — 0. Following [128] we conclude that this limit admits a representation

o t) = /R Sdites(s), Plant) = /R p(5) dpia 1 (5), (0.0.4)

where i+ is a probability measure on the real line named the Young measure. It
is completely characterized by the distribution function f(z,t,s) = pg:(—00, s].
Notice that the sequence g. converges strongly if and only if the distribution
function is deterministic, i.e., f(1—f) = 0. The basic idea underlying the method of
kinetic equations (see [106]) is that the distribution function satisfies a differential
relation named a kinetic equation. Usually the kinetic equation contains some
undefined terms and cannot be considered as an equation in the strict sense of
this word. A remarkable property of compressible Navier-Stokes equations is that
in this particular case the kinetic equation can be written in closed form as

8

Otf+d1v(fu)—83(sfdlvu+ e

(p(7) —P)d-f(x, t,r)) =0.
]

In Chapter 7 we derive the kinetic equation and show that, when combined with
relations (0.0.4) and the momentum balance equations, it gives a closed system of
integro-differential equations which describes the propagation of rapid oscillations
in a compressible viscous flow. We also prove that if the data are deterministic
and the function f satisfies some integrability condition, then any solution to
the kinetic equation satisfying some integrability conditions is deterministic. This
fact is a general property of the kinetic equation and has no connection with the
theory of Navier-Stokes equations. It follows that if pS, converges strongly, then
so does Q..

In the next chapters we apply the kinetic equation method to the analysis of
the domain dependence of solutions to compressible Navier-Stokes equations. We
restrict our considerations to the problem of the flow around an obstacle placed
in a fixed domain. In this problem = B\ S is a condenser type domain, B is a
fixed hold-all domain and S is a compact obstacle. It is assumed that U vanishes
on S x (0,T).

In Chapter 8 we collect the basic facts concerning domain convergence and
related questions from capacity theory. The most important is Hedberg’s theorem
(Theorem 8.2.22) on approximation of Sobolev functions. In this chapter we also
introduce the notion of S-convergence, which plays a key role in the next chapters.
Denote by Cg°(B) the set of all smooth functions defined in B and vanishing on
S € B. Let Wg?(B) be the closure of Cg°(B) in the W'2(B)-norm. It is clear
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that W¢?(B) is a closed subspace of W12(B). A sequence of compact sets S, € B
is said to S-converge to S if

e there is a compact set B’ € B such that S,,S C B’ and S,, converges to S
in the standard Hausdorff metric;

e for any sequence u, — u weakly convergent in W12(B) with u,, € Wsl»f‘(B),
the limit element u belongs to Wg?(B);

e whenever u € Wé’z(B), there is a sequence u, € W;f(B) with v, — u
strongly in W12(B).

We investigate in great detail the properties of S-convergence and give examples
of classes of obstacles which are compact with respect to this convergence.

In Chapter 9 we prove the central result on the domain stability of solutions
to compressible Navier-Stokes equations. We show that if a sequence S,, of compact
obstacles S-converges to a compact obstacle .S then the sequence of corresponding
solutions to the in/out flow problem contains a subsequence which converges to
a solution to the in/out flow problem in the limiting domain. In Chapter 10 we
sharpen this result by proving that the typical cost functionals, such as the work
of hydrodynamical forces, are continuous with respect to S-convergence. As a
conclusion we establish the solvability of the problem of minimization of the work
of hydrodynamical forces in the class of obstacles with a given fixed volume.

Chapter 11 is devoted to the shape sensitivity analysis of the stationary
boundary problem for compressible Navier-Stokes equations. Here we prove the
local existence and uniqueness results for the in/out flow problem for compress-
ible Navier-Stokes equations under the assumption that the Reynolds and Mach
numbers are sufficiently small. We show the weak differentiability of solutions with
respect to the shape of the flow domain and derive formulae for the derivatives
and corresponding system of adjoint equations, which are of a practical interest.
The results obtained are based on the theory of strong solutions to boundary value
problems for transport equations which is presented in Chapter 12.
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Chapter 1
Preliminaries

We use the following notation throughout the monograph.

A vector in n-dimensional Euclidean space is denoted by v = (v1,...,v,),
whether it is a column vector or a row vector. For a matrix A = (A;;), 4,5 =
1,...,n, with real entries A;;, ¢ is the row index and j the column index, and

AT = (Aj;) stands for the transposed matrix. The product of a matrix by a
column vector is denoted by Av, and of a row vector by a matrix by vA. The
product of two matrices C = AB is a matrix with the entries C;; = A, By; with
the summation convention over repeated indices.
In particular, the scalar product of two vectors is v - u = v;u;, and (Av); =
A;jvj, while
vVA=ATv

with (VA),; = (ATV)i = Aji’l)j.

The tensor product of two vectors u,v € R™ is the matrix A := u ® v with
the entries A;; := u;v;, 4,7 = 1,...,n. For the product of this matrix with a vector
we have

(u@v)w=u(v-w) and w(u®v)=(w-u)v.

The derivatives of a scalar or a vector function with respect to the time
variable are denoted by O,v = %—‘t’, and similarly for the spatial variables. There
is a difference between the Jacobian of a vector function and its gradient: the
Jacobian is denoted by

Oo On O

8x1 8.%‘2 811?3

B _[ov Ov ov] | Ova Ovz Ovg
D"_(a“”j”’)‘[azl’axz’ax3]‘ oz, Ozy Omzs |’

ng (9’03 6’03

ozy Ozy Oz
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and the gradient is its transpose

O Ovy vy
6:1,'1 3151 8.’131
ov ov ov
Vv =Dv' = (8,v;) = [Vu1, Vo, V] = | == 22 23
v M (92:0;) = [Vor, Vo, Vog] Ozy Oz Oz
Gn 0o Ouvy
813 8123 81‘3

Therefore, the nonlinear term in the Navier-Stokes equations is a vector de-
noted by ovVv = (0(v;0z,v;)) = [ov - Vi, ov - Vg, ov - V], where we sum over
the repeated indices 7 = 1,2, 3, and pv - Vv, pv - Vus, ov - Vs stand for column
vectors according to our convention. In general, for a function u : R — R we
denote by

la]
aau = %
7! ... 0Ty
the partial derivative of order |a| = a; + -+ + ag with the multiindex a =
(ay,...,aq), for integers a;, 1 =1,...,d.
We also use the simplified notation e.g., 82p for the collection of all the

62
second order derivatives 02 _ o = ———
%] Ox;0x j

R? 5 x +— p(z) € R, and 8%u, k = 1,2, for the collections of the first order and
of the second order derivatives of a vector function R? 3 z +— u(z) € R?. For
simplicity we write, e.g., u € LP(2) to mean that all components u; of a vector
function u = (uy, ..., uq) belong to the space LP(Q2), in other words L?(2) stands
here for LP(2;R?). The same convention is used for other spaces, e.g., in our
notation (v, p,¢) € C1T7(Q) x C7(£2)? means that all components of the vector
function v belong to the space C''*7(2), and the scalar functions ¢, belong to
C7(Q).

The notation d?u € LP(2) means that all the second order derivatives be-
long to LP(£2). In this way we avoid the notation with multiindices unless strictly
necessary.

For a given symmetric tensor S = (.5;;), its divergence is the vector denoted
by divS with the components divS; = 0,S;;, summed over j = 1,2,3. The
product of two tensors is the scalar A : B = A; ; B; ;.

On the other hand, points in R? are denoted by z,y with coordinates z =
(zi),y = (y:); this is an exception from the vector notation.

, 4,7 = 1,...,d, of a scalar function

1.1 Functional analysis

1.1.1 Banach spaces

We recall some well known facts; the main sources are [24] and [131]. A normed
space A is a linear space over the field of real numbers equipped with a norm
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[|-)la: A— R such that

lulla >0, |lulla=0 ifandonlyif wu=0,
[Aulla = |\l |lu]la for all A € R and u € A,
lu+v|la < |lulla+|jv||la for all u,v € A.

A sequence u, € A converges (converges strongly) to u € A if ||u, —ulla — 0 as
n — oo. In this case we write u, — w or lim, o 4, = u. A normed A space is
complete if |um — un||la — 0 as m,n — oo implies the existence of u € A such
that u,, — u. Complete normed spaces are named Banach spaces.

A set G C A is open if for any a € A there is € > 0 such that the ball
{r € A: ||z —alla < €} is contained in A. A set F C A is closed if for any
sequence F' 5 u,, — u the limit u belongs to F'. Obviously F is closed if and only
if A\ F is open. The closure of D C A is denoted by cl D or D. We say that a set
DcAisdenseinaset EC Aif E CclD.

Embedding. We say that a Banach space A is continuously embedded in a Banach
space B or that the embedding of A in B is bounded if A C B and there exists
¢ > 0 such that ||u||p < c||ul|4 for all u € A. In this case we write A — B.

Product, sum and intersection. The Cartesian product A x B of Banach spaces
A, B consists of all pairs (u,v), where u € A, v € B, and is equipped with
the norm ||u||4 + [|v]|a. Let A, B be Banach spaces, both subsets of an ambient
Banach space Z. Then the intersection A N B equipped with the norm ||u||ang =
|lw]la+||u||  and the algebraic sum A+ B := {w =u+v:u € A, v € B} equipped
with the norm
lwlla+s = inf{[lulla + |lvllz : v+ v =w}

are Banach spaces.

Linear operators. Let A, B be Banach spaces. Linear mappings 7' : A — B are

called linear operators. A linear operator is bounded if it has a finite norm

ITheney = s [Tulls = nte: [Tl < cluls for il u e )
ul|a<1

Equipped with this norm, the set £(A, B) of bounded linear operators becomes a
Banach space.

Duality. The dual space A’ of a Banach space A consists of all continuous linear
functionals u' : A — R. The duality pairing between A’ and A is defined by
(u',u) := u'(u). Equipped with the norm [|u’|| 4+ := supy , <1 [(¢; u}|, A" becomes
a Banach space. We have (see [49, Thm. 5.13|)

Theorem 1.1.1. Let Banach spaces A and B be subsets of a Banach space Z and
suppose AN B is dense in Z. Then

(AnB)Y =A"+B, (A+B)=A'nB.



