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PREFACE

This issue of Lecture Notes in Physics contains the Proceedings of the Tenth Inter-
national Conference on Numerical Methods in Fluid Dynamics, held at the Beijing
Science Hall in China, June 23-27, 1986. The Proeeedings include all the papers
presented at the Conference, namely, the inaugural lecture by K. Feng, the invited
lectures by V.P. Dymnikov, M.Y. Hussaini, P. Kutler, M. Napolitano, N. Satofuka,
F.G. Zhuang, and H.X. Zhang, as well as 108 contributed papers arranged in alpha-
betical order of the first author's name. The contributed papers were selected from
abstracts submitted from all over the world by four Committees on Paper Selection
based in China, Europe, the U.S.A., and the U.S.S.R. and headed by the editors
(China), Temam (Europe), Holt (U.S.A.), Chernyi and Rusanov (U.S.S.R.).

The Conference was attended by over 200 scientists. In addition to the strong
representation from China, a large number of scientists from the U.S.A., Japan,
France, Italy, West Germany, the U.S.S.R., the Netherlands, Ireland, Canada, the
United Kingdom, Belgium, Sweden, Australia, Brazil, and Norway participated at the
Conference. A list of the participants is given at the end of the Proceedings.

We ;erved as ‘general conference cochairmen and are indebted to the many col—
leagues who helped with the details of the meeting. In particular, our thanks go to
all the members of the International Organizing Committee and the Local Committee
for the Conference, who were in charge of all academic activities, as well as to
Mr. C.S. He of the Chinese Aerodynamics Research Society and Mr. Y. Cao of the China
International Conference Center for Science and Technology, who supervised all of
the local arrangements. ) '

Financial support for the Conference was provided by the China Aerodynamics
Reséarch and Development Center. Peking University, the Computer Center of Academia
Sinica and the Institute of Computer Technology of Academia Sinica helped the Con-—
ference in many ways. We greatly appreciate their. supports.

We are also indebted to Prof. W. Beiglbdck and Ms. C. Pendl for valuable as—

sistance in preparing these Proceedingg.

August 1986 F.G. Zhuang and Y.L. Zhu
(Editors)
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SYMPLECTIC GEOMETRY AND NUMERICAL METHODS
IN FLUID DYNAMICS

K. Feng

Academia Sinica Computing Center, Beijing, China

1. INTRODUCTION

Tt is an honor and a pleasure for me to present the inaugural talk at the Tenth
International Conference on Numerical Methods in Fluid Dynamics in Beijing. I want
to thank the Organizing Committee, its Secratory, Prof. H. Cabannes, the Conference
Chairman, Prof. F.G.Zhuang, and the Co-chairman, Prof. Y.L.Zhu for the kind invitation.

We present a brief survey of considerations and results of a study [1,2,3,4,6],
undertaken by the author and his group, on the links between the Hamiltonian

formalism and the numerical methods for solving dynamical problems expressed in the

form of the canonical system of differential equations

dp;i  _  am 4 _ am 3 = e (1.1)
dt aq £l dt ap_ i £ 3 n ®
1 i
with given Hamiltonian function H(pl,"" Prn> 4957 qn)-

The canonical system (1.1) with remarkable elegance and symmetry was introduced
by Hamilton as a general mathematical scheme, first for problems of geometrical optics
in 1824, then for conservative dynamical problems in 1834, The approach was followed
and developed further by Jacobi into a well-established mathematical formalism for
analytical dynamics, which is an alternative of, and equivalent to, the Newtonian and
Lagrangian formalisms. The geometrization of the Hamiltonian formalism was undertaken
by Poincare in 1890's and by Cartan, Birkhoff, Weyl, Siegel, etc., in the 20th

century; this gave rise a new dicipline, called symplectic geometry, which serves

as the mathematical foundation of the Hamiltonian formalism.

Tt is known that, Hamiltonian formalism, apart from its classical links with
analytical mechanics, geometrical optics, calculus of variations and non-linear PDE
of first order, has inherent connections also with unitary representations of Lie
groups, geometric gquantization, pseudo-differential and Fourier integral operators,
ctassification of singularities, integrability of non-linear evolution equations,
optimal control theory, etc., It is also wunder extension to infinite dimen-
sions for various field theories, including fluid dynamics, elasticity, electrodyna-
mics, plasma physics, relativity, etc., Now it is almost certain that all real physical
processes with negligible dissipation can be described, in some way or other, by

Hamiltonian formalism, so the latter is becoming one of the most useful tools in the



mathematical arsenal of physical and engineering sciences. In this way, a systematic
study of numerical methods of Hamiltonian systems is motivated and would eventually
lead to more general applicability and more direct accessibility of the Hamiltonian
formalism. We try to conceive, design, analyse and evaluate difference schemes and
algorithms specifically within the framework of symplectiec geometry. The approach
proves to be quite successful as one might exvpect, we actually derive in this way
numerous "unconventional" difference schemes. Due to historical reasons, classical
symplectic geometry, however, lacks the "computational' component in the modern sense.
Our present study might be considered as an attempt to fill the blank.

In the following, vectors are always represented by column matricés, matrix

transpose is denoted by prime '. Let Z=(Z1,"',Zn, Zn+1>'"’Z2n>':(pl""’pn’ql""’
ap)'s
[3H asw OH t1: — ﬁﬁ_]'
7z — Lap o B > b 0
9D, a0, * dq; 3,
0 1
n -1
=7 = J' = - _
Ip = [—I 0 1, J J.
n
(1.1) can be written as
dz _ -1 |
i " Hy o -2

defined in phase space R2n with a standard symplectic structure given by the non-

singular anti-symmetric closed differential 2-form

w=Idz; A dz, 45 = Z dp; A dqi

According to Darboux Theorem, the symplectic structure given by any non-singular anti-
symmetric closed differential 2-form can be brought to the above standard form, at
least locally, by suitable change of co-ordinates.

The Fundamental Theorem on Hamiltonian Formalism says that the solution z(t) of

the canonical system (1.2) can be generated by a one-parameter group G(t), depending
2n

on the given Hamiltonian H, of canonical transformations of R (locally in t and z)

such that

z(t) = G(t) z(0).

A . . . .
A transformation z - z of R2n is called canonical, or symplectic, if it is a local

diffeomorphism whose Jacobian %E— = M is everywhere symplectic, i.e.
M'JM = J, i.e. M € Sp(2n).

The canonicity of G(t) implies the preservation of 2-form w, 4-form wAw, *+-,

2n-form wAwA**+*Aw. They constitute the class of conservation laws of phase area of

even dimensions for the Hamiltonian system (1.2),
Moreover, the Hamiltonian system possesses another class of conservation laws

related to the energy H(z). A function ©(z) is said to be an invariant integral of

(1.2) if it is invariant under (1.2}

o(z(t)) = ¢(z(0))



which is equivalant to
{o, H} =0,
where the Poisson Bracket for two functions @(z), y(z) are defined as

-1
lo,vli=07"y,

H itself is always an invariant integral, see, e.g., [5].
The above digressions on Hamiltonian systems suggest the following guidelines
for the numerical study of dynamical problems: The problem should be expressed in some

suitable Hamjltonian formalism. The numerical schemes should preserve as much as

possible the characteristic properties and inner symmetries of the original system.
: +

The transition from the k-th time step z¥ to the next (k+1)-th time step 2%*1 should

be canonical for all k and, moreover, the invariant integrals of the original system

should remain invariant under these transitions.

2. CANONICAL DIFFERENCE SCHEMES FOR LINEAR CANONICAL SYSTEMS

Consider the case for which the Hamiltonian is a quadratic form

H(z) = % z'Sz, S' =8, H, = Sz, (2.1)
then the canonical system
dz = 1a, L =g g (2.2)

dt

is linear, where L is infinitesimally symplectic, i.e. L satisfies L'J + JL = O.

The solution of (2.2) is
z(t) = ¢(t) z(0),

where G(t) = exp tL, as the exponential transform of infinitesimally symplectic tL,

is symplectic.

It is easily seen that the weighted Euler scheme

+
Lk s pe s - a) )
for the linear system (2.2) is symplectic if and only if a = %? , 1.e. it is the
case of time-centered Fuler Scheme with the transition matrix F.
o)
k+1 k T %
z - =Faz, Fo=o(t), k)= TR (2.3)
)

F., as the Cayley transform of infinitesimally symplectic tL, is symplectic. The 2nd
order canonical Euler scheme (2.3) can be generalized to canonical schemes of arbitrary
high order [2,3]. For example, by taking the matrix transform function ©(\) in (2.3)

to be the diagonal Padé approximants Pm(x)/Pm(—A) to the exponential function exp A,

where
2 _ 2
Po(1)=1, Py(A)=24X, Py(A)=12+63\”,+-x, Pp(a)=2(2m-1)Py 1 (A)+a"R__,(A),
we can prove that the difference schemes
p_(TL)
k+1 m k
VA = —— Z = sse 2.)4
Pm(—TL) m 1a25 ( )

for the system (2.2) are symplectic, A-stable, of 2m-th order of accuracy, and having



the same set of guadratic invariant integrals including H(z) as that of system (2.2).
The case m=1 is the time-centered Euler scheme (2.3).

For the general non-linear canonical system (1.2), the time-centered Euler scheme

1 (Zk+l

Ky _ -1 . , 1 , k+l k
= -z ) =37 H({ E;(z +2z)) (2.5)

is canonical. However, unlike the linear case, the invariant integrals @(z) of system

(1.2), including H(z), are conserved only approximately
3
o(z5™) - 0(z®) = o(<?).

The time-centered Euler schemes (2.3), (2.5) and their canonical generalizations (2.h)
are all implicit. For the case of separable Hamiltonian

H(p, q) = U(p) + V(a),
one can construct time-staggered schemes which are canonical, of 2nd order accuracy

and practically explicit [1,2], e.g.,

K+l k K+
(p -p)=-vgla ~

k+1+5 k+%
(q 2.q ) =uU

),

(2.6)
(pk+l).

£
T
L

D

o

The p's are set at integer times t = kT, q's at half-integer times t=(k + %)T. We

need averaging, e.g., using

2
to compute the invariant integrals ©(p, q) and get

k+1
Gl - g ] - gl K q¥) = o(r3).

k _ 1 (qk-% . qk+%)

For the comparison of stability for the linear system (2.2) and the canonical

schemes (2.4), (2.6) and the application of (2.6) to the wave equation, see [1].
3. CONSTRUCTION OF CANONICAL DIFFERENCE SCHEMES VIA GENERATING FUNCTIONS

A major component of the transformation theory in symplectic geometry is the method

of generating functions,see, e.g., [5], which also play a central role for the cons-

truction of canonical difference schemes. In [2,4] a constructive general theory of

generating functions is given, roughly as follows: Let

. [A B ] T_l—[Al Bl}
“le pid o, ey Dyl o
T be a non-singular real matrix of order Ln satisfying
0 I -J 0
g 2n [T = p [ 2n for some u # 0, (3.1)
~Iog 0 0 J2 5
T defines a linear transformation in product space R2n x R2n by
A A A A
= + 2
W Ai Bz [ pA ] [W’J € R2n < R n. (3.2)
w=2Cz + Dz , z 42w

A . ; :
Let z » z = g(z,t) be a time-dependent canonical transformation defined by

glz, t) = My G(z, -t) (3.3)




