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Introduction

In 1980, while a third year student at Moscow State University, the author was
given' a rather simply formulated problem to solve. Take a connected Lie group
G and a discrete subgroup I' with the manifold G/T' compact (such a subgroup T
is called a uniform lattice in G). Now multiply I' on the left by a one-parameter
subgroup gr C G and take the closure ggI' C G/T. The question: Is this closure
a submanifold in G/I'? If one lifts everything to the group G, the problem seems
purely algebraic (and easy to solve if G is commutative or compact).

One can somewhat extend the problem and consider all orbits ggz, € G /T, of
the action (¢,2) — g¢:z, called a homogeneous flow. A more cautious formulation is
the following: Is it true that the closure grz C G/T is a manifold for a generic orbit
(that is, for almost all z € G/I')? This question is related to ergodic theory (an area
about which the author then had only a rather vague idea). Experts advised him
in this connection to read the book of Auslander, Green and Hahn [AGH] “Flows
on homogeneous spaces”, written in the early sixties. This is how the author found
himself in the area that combines ergodic theory and Lie groups. As became clear
later, the problem of orbit closures was already at the focus of attention of experts
due to applications in number theory, but the main events were yet to follow.

Having no idea about the story, the author first decided to study the case
of nilpotent Lie groups G, the next in complexity after the commutative case.
Fortunately, the book [AGH)] contained all the information necessary to solve the
problem: Green’s ergodicity criterion and a result due to Auslander saying that any
ergodic nilflow (G/T', gr) is minimal, that is, all orbits are dense in G/T'. An easy
induction shows that in the nonergodic case, the closures grz, as for commutative
groups G, are not only submanifolds but even homogeneous subspaces (that is, for
every point z € G//T" there exists a subgroup F' C G such that ggZ = Fi). The next
class — compact extensions of nilpotent groups — revealed that all orbit closures are
still smooth but not always algebraic.

To report the results obtained, the author came to (and became a constant
participant in) the seminar on dynamical systems headed by D. V. Anosov and
A. M. Stepin. It became clear at once that in the general case one cannot hope
that all orbits are “good”. As an example one takes either the geodesic flow on a

compact surface of constant curvature —1 (here G = SL(2,R)), or the suspension
21
11

solvable group of exponential type). In both cases one obtains Anosov flows, the
theory of which was developed by Anosov, Sinai, Smale, et al. Orbits of such flows
were studied in detail by means of symbolic dynamics (see, for instance, [Al] or

over the automorphism ( ) of the torus T? (this gives rise to a three-dimensional

!In connection with integration of Hamiltonian systems [N, KK, MF].

ix



X INTRODUCTION

[Bo79]). Moreover, long ago, back in the twenties, Morse had constructed an orbit
of the geodesic flow whose closure is nowhere locally connected (and locally looks
like the product of a Cantor set and an interval)! (Note that the algebraic origin of
the geodesic flow was first explored only in the fifties by Gelfand and Fomin [GF],
and this led to the modern theory of dynamical systems on homogeneous spaces.)

Still, one could hope that the closure of a generic orbit is a manifold. This
is supported by the easy observation that almost all orbits of an ergodic flow are
everywhere dense. Moreover, it is natural to extend the class of homogeneous
spaces under question by considering all spaces G/D of finite volume, that is, those
carrying a smooth finite G-invariant measure (such spaces need not be compact, as
is seen from the example SL(2,R)/SL(2,Z)). Thus, one has to study nonergodic
flows on spaces of finite volume. It turned out that the ergodicity criterion for
homogeneous flows was essentially known by that time. More precisely, in the sixties
Moore [Mo066] examined the semisimple case, and Auslander [Au] the solvable case.
Spectral invariants of ergodic flows in these cases were found by Stepin [Ste69,73]
and Safonov [Saf]. The key step in reducing the general case to the semisimple and
solvable cases was made by Dani [Da77]. This stage of the theory of homogeneous
flows was summarized in the paper of Brezin and Moore [BM], where they found
the ergodicity criterion and calculated the spectrum of homogeneous flows on the
so-called admissible spaces of finite volume.? It remained to construct explicitly
the ergodic decomposition of homogeneous flows. The fact that the space G/T
breaks into closed invariant (not necessarily homogeneous) submanifolds such that
the flow on each of them is ergodic relative to a smooth invariant measure was not
difficult to prove [St83]. But even this implies that the closure of a generic orbit
is smooth (more specifically, is equal to the corresponding ergodic submanifold).
More surprising was that every ergodic manifold can be finitely covered (together
with the flow thereon) by a homogeneous space of finite volume (see [St86b,89]).
Therefore the theory of homogeneous flows was reduced to the ergodic case.

These results are expounded in a fairly detailed way in Chapter 1 of the present
book. It is worth noting that the ergodicity criterion is based on the Mautner
phenomenon [Mo80] for unitary representations; to establish the latter we apply
a nice argument suggested by Margulis [Ma91b] which does not involve spectral
theory. While studying homogeneous spaces we apply the methods of algebraic
groups.

As for individual orbits, it became clear after the example with the geodesic
flow that everything depends on the subgroup gr C G. On one hand, it may be
the case that the action of gg by left translations on the group G has at most a
polynomial rate of divergence of close orbits relative to the right-invariant metric
(then gr is called a quasi-unipotent subgroup). Considering the adjoint action of
gt on the Lie algebra of the group G shows that such a subgroup must have all
eigenvalues of absolute value 1 (if all eigenvalues are equal to 1, the subgroup g is
called unipotent). On the other hand, the rate of divergence may be exponential
(then gr is said to be partially-hyperbolic). In this case the flow on G/T induced

2Still, the author was there in time to make “one or two lucky misimprovements” [St86a,87a].
In particular, he proved that every space of finite volume is admissible (see also [Wu, Wi87,
Z87]). Thus, this subject was closed.
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by gr is uniformly partially-hyperbolic.> Such a flow possesses the contracting and
ezpanding smooth foliations formed by orbits of the associated horospherical sub-
groups. For homogeneous actions, the techniques of partially-hyperbolic flows were
already applied in the sixties by Auslander, Moore and Stepin; the general theory of
smooth uniformly partially-hyperbolic flows was built in the late seventies by Pesin
and Brin. An impression emerged that all orbit closures of a quasi-unipotent flow
are always smooth (this was supported by examining the class of solvable groups
G), whereas a partially-hyperbolic flow must have a “bad” orbit (see [St87b]).

In the spring of 1985, G. A. Margulis gave a talk at the seminar about a cer-
tain application of homogeneous flows to number theory, and clarified the situation
with the orbit closures conjecture. First, any (not necessarily homogeneous) uni-
formly partially-hyperbolic flow on a compact manifold has an orbit which does not
come back to a neighborhood of the original point (and hence its closure is not a
manifold). Second, as followed from the talk, the situation with (quasi)unipotent
flows is much more delicate. More precisely, in the seventies Raghunathan noticed
a connection between unipotent orbits on SL(3,R)/SL(3,Z) and the long-standing
Oppenheim-Davenport conjecture on values of quadratic forms at integral points:
the latter would be settled if one managed to prove that closures of all bounded
orbits of the unipotent subgroup

1t t2)2
Ut = 0 1 t

0 0 1
are algebraic. The solution of this problem was precisely the subject of the talk
(see [Ma87]). There is a more general conjecture (let us call it the Raghunathan
topological conjecture, though it was formulated by Dani in [Da81]) stating that
all orbits of a unipotent flow must have algebraic closures (that is, they must be
homogeneous subspaces of finite volume).* Moreover, all ergodic measures of such
a flow must have an algebraic origin (the Dani measure conjecture).

By that time, the case of a solvable group G was completely understood (see

[St84a]). However, the most important affirmations of these conjectures come

from the study of the horocycle flow induced by the subgroup h; = ((1] I) CcG=

SL(2,R). Back in the thirties, Hedlund (by purely geometric methods) had proved
that h; has only periodic and everywhere dense orbits provided that the space G/T
is of finite volume; moreover, the flow h; is minimal if G/T is a compact space! The
corresponding results on ergodic measures were obtained by Furstenberg [Fu72]
and by Dani and Smillie [DS]. The conjectures were also supported by results
of [Bo76, V75, V77, EP] on actions of horospherical subgroups on compact
homogeneous spaces. Every horospherical subgroup is unipotent, but not vice versa:
for instance, the main difficulty in the study of the flow (SL(3,R)/SL(3,Z), ug) is
that the subgroup ug is not horospherical. In the general case, as was mentioned
by Margulis, the Raghunathan—Dani conjectures seem to be very difficult to prove
(especially the measure part).

3Experts in smooth dynamical systems will notice at once that the quasi-unipotent and
partially-hyperbolic cases correspond to whether or not the entropy of the flow is trivial.

4Thanks to the above remark of Margulis, the Raghunathan conjecture easily implies the
criterion for all orbit closures to be smooth [St90].
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The difficulties in studying unipotent actions were already clear from an early
result of Margulis [Ma71] saying that no unipotent trajectory in SL(n,R)/ SL(n, Z)
exits to infinity (this was utilized in one of the proofs of his celebrated arithmeticity
theorem). The proof was highly nontrivial (now it is more accessible — see [DM90Db,
KM98]), but the result did not even ensure that such a trajectory is recurrent (that
is, comes back to any neighborhood of the original point)! Nevertheless, it proved
to be one of the most important tools for studying dynamics of unipotent flows —
especially after Dani [Da84,86b] established a general result of this kind stating
that any unipotent trajectory on a space of finite volume visits a compact subset
with positive density of times.

In the eighties and nineties the study of unipotent actions took the central posi-
tion in the theory. Partial results (again for horospherical subgroups) were obtained
in [Da86a] and [St91], and for unipotent subgroups of SL(3, R) in [DM89,90a,b].
On the other hand, in the early eighties Ratner discovered surprising rigidity prop-
erties of the horocycle flow [R82a,b,83]. For instance, a measure-theoretic isomor-
phism of two horocycle flows turned out to have an algebraic origin.® The proof
utilized an H-property of the horocycle flow which made the polynomial nature
of divergence more precise and, like the Margulis homecoming theorem, was based
on certain properties of polynomials (subsequently Witte [Wi85], by exploring
Ratner’s idea, established the measure-theoretic rigidity of all ergodic unipotent
flows). It was Ratner who by applying the so-called R-property of arbitrary unipo-
tent flows (a modification of the H-property of the horocycle flow) managed to
prove the measure conjecture in a series of papers [R90a,b,c,91a] whose length
totals more than 100 pages. It is important to emphasize that the algebraicity of
finite ergodic measures was proved in a much more general situation than it was
originally conjectured: for arbitrary discrete subgroups I' C G. Quite soon, by
applying the measure conjecture and the Dani-Margulis results on homecoming,
she managed to settle the topological conjecture as well [R91Db] (simultaneously,
Shah [Sh91], making use of [R91a], proved the conjecture for regular unipotent
subgroups of semisimple groups of rank 1). In a sense, these two theorems of Rat-
ner topped off the present stage of the theory of homogeneous flows. Margulis and
Tomanov [MT94,96] (by using some ideas of Ratner as well as some from earlier
papers of Dani and Margulis) suggested a more accessible proof of Ratner’s mea-
sure theorem. Earlier Dani and Margulis [DM93] gave an alternative proof of the
topological theorem.

In Chapter 2 we try to give an idea of what is involved in studying unipotent
flows. The exposition starts with a detailed treatment of the geodesic and horocycle
flows. Unfortunately, in the general case the proof of the measure conjecture is too
complicated to reproduce within the framework of this book. To give its flavour,
we examine the proof on the examples G = SL(2,R) and G = SL(2,C), following
[R92] and [MT96] respectively. The proof of Margulis’ homecoming theorem for
unipotent trajectories is also demonstrated on the simplest example G = SL(2,R).
The topological conjecture is proved in full scope along the lines of [DM93].

For one-parameter unipotent flows there is a stronger result: every trajectory
not only has its closure homogeneous, but is uniformly distributed therein [R91Db)].
We expound various generalizations of the assertion which are due to Dani and Mar-
gulis [DM93], Ratner [R94], Eskin, Mozes and Shah [MS], [Sh94], [EMS96,97].

SFor nilflows, the corresponding results were earlier proved by Parry [P71,73].
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Essentially, all of them are concerned with the convergence in the weak* topology
on the space of probability measures on G/T.

Of course, the proof of the Raghunathan-Dani conjectures gave a new stim-
ulus to research in this area and served as a base for numerous applications. For
instance, in the class of arbitrary one-parameter homogeneous flows one managed
to settle Rokhlin’s problem on multiple mixing and to better understand their min-
imal sets (Starkov [St93,95a]). There has been great progress in studying orbits
and ergodic measures for actions of arbitrary subgroups F C G (Ratner [R94],
Mozes [Moz95a], Shah and Weiss [Sh96, W, SW], Katok and Spatzier [KS96],
Margulis and Tomanov [MT96)).

Also, in Chapter 3 we discuss the following topics. After Dani [Da85,86¢]
found the Hausdorff dimension of the family of bounded orbits in a special case,
the full solution of the problem was given by Kleinbock and Margulis [KM96|.
Nice results on topological rigidity are due to Markus [Mar83], Benardete [Ben]
and Witte [Wi90]. The structure of time changes for homogeneous flows is not
well understood: we only mention results of Livshitz [Liv] and Katok and Spatzier
[KS94] for Anosov actions, a classical theorem of Kolmogorov [Ko] for rectilin-
ear flows on the 2-torus (subsequently developed by many authors) and a result
of Ratner [R78,79] for horocycle flows. In recent times, the phenomenon of expo-
nential mixing of certain homogeneous K-flows became one of the most powerful
tools (Moore [Mo87], Ratner [R87a], Katok and Spatzier (KS94], Kleinbock and
Margulis [KM96,99]).

It is worth emphasizing that, due to newly found applications in number theory,
the interest in homogeneous flows rose considerably. For instance, at two recent
International Congresses of Mathematicians three lectures were devoted to the the-
ory of homogeneous flows, and two of them (those of Margulis at ICM-90 and of
Ratner at ICM-94) were plenary ones. One of the first applications of homoge-
neous flows in number theory was given in [AGH)], where nilflows were utilized
to prove Weyl’s theorem on uniform distribution of the fractional parts of val-
ues of polynomials. A classical result due to Kolmogorov [Ko] on time changes
for rectilinear flows on the 2-torus reveals a connection with Diophantine proper-
ties of the rotation number. Dani [Da85] showed how Diophantine properties of
reals affect the behavior of corresponding orbits of the geodesic flow. There exist
numerous refinements of this connection; in particular, a well-known conjecture of
Littlewood reduces to a certain (not yet established) statement on the structure of
orbits of the Cartan diagonal subgroup on SL(3,R)/SL(3,Z). After Margulis set-
tled the Oppenheim-Davenport conjecture, Dani and Margulis [DM93], and also
Eskin, Mozes and Margulis [EMM], found the exact asymptotics of the number of
Diophantine solutions of the inequality a < Q(z) < b for indefinite quadratic forms.

Kleinbock and Margulis [KM98] obtained remarkable results proving a gen-
eral conjecture of Sprindzhuk [Sp80] on Diophantine approximation on manifolds.
Skriganov [Skr98] used homogeneous flows to obtain asymptotic estimates of the
number of lattice points inside polyhedra (the first results in the two-dimensional
case go back to the twenties and are due to Hardy and Littlewood [HL] and Khin-
tchine [Kh23]). Eskin, Mozes and Shah [EMS96] sharpened results of [DRS] and
[EM] on the asymptotics of the number of lattice points on homogeneous mani-
folds in R”. All of these questions are discussed in Chapter 4. Before that, we give
preliminaries from the theory of Diophantine approximation.
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A considerable number of recently found applications show that the theory of
homogeneous flows is far from being completed. The reader especially interested in
number theory is referred to surveys of Borel [B] and Margulis [Ma97].

For various reasons, we do not touch upon certain subjects. These are Bernoulli
properties of homogeneous flows, Markov partitions and symbolic dynamics (see
[Si68], [Kat], [Bo79], [OW]); the Bernoullicity criterion was studied by Dani
[Da76a] but in the general case it is not yet proved. All Lie groups throughout the
book are real; hence we are not concerned with dynamical systems on homogeneous
spaces over other local fields; we only note that the Raghunathan—Dani conjectures
are settled in this setup as well (see [R93,95a,98] and [M'T94,96]). Entropy theory
will also play a minor role. We do not touch upon the theory of flows on spaces of
infinite volume. Whereas the solvable case is completely understood [St87b], the
case G = SO(1,n) presents an independent and rather delicate object of research
in the theory of Fuchsian and Kleinian groups. Here the results are not definitive;
see the book [Ni] and the survey [St95b].

Other subjects we try to present in as much detail as possible. In addition to
[AGH], we intensively used the surveys [Da96,99], [Gh], [Ma91b,97], [R84,95b)],
[SSS], [St97]. The reader may consult the list of open problems given in [Ma99]
to find directions for future research.

The author is very grateful to A. S. Mishchenko, whose question introduced
him into the topic. Since then, the author had a happy opportunity to interact
with many remarkable experts in ergodic theory and Lie groups: D. V. Anosov,
S. Dani, A. B. Katok, G. A. Margulis, M. E. Ratner, A. M. Stepin, E. B. Vinberg.
The author is also happy to acknowledge the great impact of conversations with
A. Eskin, D. Kleinbock, S. Mozes, V. V. Ryzhikov, N. Shah, G. Tomanov, D. Witte,
and many others.

The author was supported by the Russian Foundation of Basic Research (grant
No 95-01-02804).



List of Notations

Z — the ring of integers

N — the semigroup of positive integers

Q, R, C — the fields of rational, real and complex numbers

G, H, F, etc. — Lie groups

g, b, f, etc. — Lie algebras

I' C G — discrete subgroup of a Lie group G

G5 — the semisimple splitting of a Lie group G

Ad — the adjoint representation

Aut(G) — the automorphism group of a Lie group G

Dy C G — the identity component of a closed subgroup D C G

D C G — the closure of a subset D C G

gr C G — one-parameter subgroup of a Lie group G

g% C G — the cyclic group generated by an element g € G

G/D — the homogeneous space of a Lie group G by a closed subgroup D ¢ G

(G/D, gr) — one-parameter homogeneous flow

E(gr), E(gr) — the ergodic partition and decomposition of a homogeneous
flow

SL(n,R) — the group of unimodular real n x n matrices

AT — the transpose matrix

diag(ti,...,t,) — the diagonal matrix with elements ¢,...,¢,

det — the determinant of a matrix

card — the cardinality of a set

(X, u) — measure space

P(X) — the space of Borel probability measures on a topological space

C.(X) — the space of continuous functions with compact support on a topo-
logical space

H — Hilbert space

Im(¢) — the image of a homomoprhism ¢

Ker(¢) — the kernel of a homomorphism ¢

H"™ — the n-dimensional Lobachevskii space

‘H™ — the n-dimensional Hausdorff measure
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Preliminaries

We recall some definitions from topology which are relevant to our purposes. All
topological spaces X are assumed to be metrizable, locally compact (that is, every
point z € X has a neighborhood with compact closure) and separable (that is, X
contains a countable dense subset). In particular, X always possesses a countable
base of open sets (that is, satisfies the second countability aziom).

Borel sets in X are sets obtained from open sets by at most countably many
operations of union, intersection and complementation. The family of Borel sets
forms a o-algebra (in particular, a countable intersection and a countable union of
Borel sets are Borel sets).

A subset A C X is said to be locally closed if for every point x € A there exists
a neighborhood O(x) C X such that the intersection A N O(z) is closed in O(x).
A subset A C X is locally connected if for any point x € A and any neighborhood
O(z) C X there exists a neighborhood O’(z) C O(x) C X such that the intersection
ANO'(X) is connected.

A. Ergodic theory

The information to follow is taken from [KSF].

1. Measure theory. A measure p on a set X is a nonnegative o-additive
function g : Q(X) — RT Uoo defined on a o-algebra Q(X) of subsets in X. Subsets
in Q(X) are called measurable sets. The measure p is said to be complete if from
u(A) =0 and A € Q(X) it follows that B € Q(X) for every B C A.

A measure p on X is called absolutely continuous relative to a measure p/
(we denote this by pu < p') if all p/-measurable sets are p-measurable and from
1 (A) = 0 it follows that u(A) =0. If p < p and ¢’ < p, then the measures p and
u' are called equivalent (pn ~ p'). Measures p and u' are mutually singular if there
exists a subset A C X such that pu(A) =0 and /(X — A) = 0.

A measure p is said to be finite if u(X) < oo, and o-finite if X = ;o Xs, where
w(X;) < 0o. A finite measure p normalized by the condition p(X) = 1 is called
a probability measure. A pair (X, u) (we omit Q(X) to simplify notation) will be
called a measure space. In what follows, we will always work with sufficiently good
measures. To be precise, under rather natural conditions (2(X) has a countable
basis (mod 0), the measure p is complete and o-finite, etc.; see [KSF] for more),
the space (X, p) is measure-theoretically isomorphic to the real line R equipped
with a Lebesgue—Stieltjes measure (finite or infinite). If this is the case, the space
(X, 1) will be called a Lebesgue space.! If in addition u(X) = 1, the pair (X, p) is
called a probability space.

1We emphasize that in contrast to the common definition we do not require the measure
to be finite.



2 PRELIMINARIES

We recall that a Lebesgue—Stieltjes measure m on R is given by a nondecreasing
left continuous function F': R — R. Here

m(a,b) = F(b) — F(a+0), mla,bl = F(b+0) — F(a).

By a standard construction one obtains a o-additive measure defined on the o-
algebra of Borel subsets in R. The completion of this measure is called a Lebesgue—
Stieltjes measure (note that the family of measurable sets depends on the function
F). The usual Lebesgue measure ! on R is given by the function F(z) = z.

If m < I, the measure m is called absolutely continuous. For such a measure
there exists a nonnegative measurable (relative to the Lebesgue measure) function

5 : R — R such that
/ fdm = / f(x)s(x)dx
R R

for any Lebesgue measurable function f. If the measure m is supported on a finite
or countable? subset in R, it is called a discrete measure. If every countable set
is of zero m-measure and at the same time m(R — A) = 0 for some set A C R of
zero Lebesgue measure, then m is said to be a singular measure. It is known that
every Lebesgue—Stieltjes measure is the sum of an absolutely continuous measure,
a discrete measure, and a singular measure.

Let a map f : X — X' be given and let the space X be equipped with a
measure p. Then X’ can be equipped with a measure p' = f,u by the rule

p'(A) = p(f~'(A)) for any A C X’ with measurable inverse image f~'(A)

(note that (X', f,u) can fail to be a Lebesgue space).

Let (X,u) and (X', ') be two measure spaces. A map f: X — X' is called
measurable if the inverse image f~!(A) of each measurable set A C X’ is measur-
able. A measurable map f: X — X' is called measure-preserving if f.u = ', that
is, u(f~1(A)) = p/'(A) for each measurable A C X'.

2. Actions on a measure space. An automorphism of a measure space
(X, ) is a measure-preserving invertible (mod 0) map f: X — X. By Aut(X, )
we denote the group of all automorphisms of the space (X, u) equipped with the
following topology:

fro = Fif p(fn(A) N B) — u(f(A) N B) for all measurable sets A, B C X.

Let F be a topological group (for instance, the group R of reals or the group
Z of integers). In what follows, we assume that F is locally compact and second
countable.® By a continuous action of F on a space (X, 1) we understand a contin-
uous homomorphism ¢ : F© — Aut(X, x). Throughout the book we consider only
continuous actions, and instead of ¢4(x) we usually write gz, where g € F, x € X.
In the case F' = R, a continuous action is called a flow, and in the case FF = Z a
one-generator action.

A measurable set A C X is called F-invariantif gA = A (mod 0) for all g € F.
Under our assumptions (the space (X, u) is Lebesgue and F is second countable
and locally compact) this is equivalent to the property FA = A (mod 0) [Ver]. An
action of F on (X, i) is ergodic if for every F-invariant set A C X either u(A) =0
or u(X — A) = 0 (in this case p is called an F-ergodic measure).

2Not necessarily discrete.
3 Actually, all our groups will be finite-dimensional Lie groups.
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3. Unitary representations. Let L?*(X, u) be the Hilbert space of (equiv-
alence classes of) complex-valued functions on X square integrable relative to p.
We equip the space with the scalar product

(1.5 = [ 1)@

A norm in the space L?(X,u) is given as usual: ||f||*> = (f,f). Since (X,pu) is
always assumed to be a Lebesgue space, it follows that L*(X, ) is separable.

Let a probability measure u be invariant for an action (X, F'). Then one defines
a continuous unitary representation p : F' — U(L?(X, u)) by the rule

(0of)(x) = flg7'x), g€F zeX, fel’X,p

(one says that F' is unitary if

(pgfvpgf/):(fvf/)a g€ F, f7f/EL2(X7H)7

and this always holds whenever u is F-invariant).
Since the action is continuous, it follows, in particular, that the stabilizer

Stab(f) ={g € F: pof = f}

for each element f € L?(X, ) is a closed subgroup of F'.

In the case F' = R, a continuous flow on (X, u) will be denoted by (X, ¢r).
An element f € L?(X,p) is called an eigenfunction if there exists A € C such
that p,f = A'f, t € R (here the equality means that the functions coincide almost
everywhere on X). From the unitary property it follows that |[A\| = 1; the case A = 1
corresponds to an invariant function. In this setting the flow (X, ¢r) is ergodic if
and only if apart from constants there are no ¢r-invariant functions in L?(X, ).

4. Ergodicity of rectilinear flows on the torus. Let X be the torus
T" = R"/Z" equipped with the usual R"-invariant Lebesque measure y, and let
v € R”. The rectilinear flow on the torus T™ induced by the vector v is a one-
parameter group of translations:

di(x+Z") = (tv+z+2") e R"/Z", x € R™

One says that the coordinates vy, ..., v, are linearly independent over the field
@Q of rationals if

(*) (alvl+"'+anvn:0, azeQ)ﬁ(alzo, i:1,...,n).

The equation a1z; + - - + anz, = 0, z € R™, defines a subspace L C R". If all
a; are rational, then the subspace is called rational and, as is known, intersects
the lattice Z" C R™ in a lattice (that is, L/Z™ N L is a torus). Therefore if the
coordinates of v are not independent over Q, the torus T™ fibers into a family
of invariant subtori of equal dimensions. Clearly, in this case the rectilinear flow
is not ergodic. On the contrary, if the coordinates of v are independent over Q,
then the flow is ergodic. In fact, T™ carries a transitive action of the group R",
and one can consider a continuous unitary representation p : R* — U(L%(T™, p)).
Assume that f € L?(T", ) and p(tv)f = f, ¢ € R. The stabilizer H = Stab(f)
is a closed subgroup of R®, and Rv, Z" C H. It suffices to prove that H =
(RvZm)o = R™. Since the group R™ is commutative, it follows that the subgroup
H is closed, contains Rv and intersects Z™ in a lattice. If dim H < n, we arrive



