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Preface

Important topics in biocatalysis for organic synthesis are described in this book,
for experts and non-experts. Especially, the book focuses on those reactions that
are under development now and will be more significant in the future. Therefore,
each chapter describing a specific theme summarizes not only the present state
but also the direction of the research. The prospects and dreams that will become
possible, using biocatalysis, in the future to construct a sustainable society are also
included.

The book consists of four sections: the enzymatic reaction under unusual
conditions, unique biocatalytic reactions, valuable compounds synthesized using
biocatalysis and latest molecular biology methods to make useful biocatalysts. The
first section dealing with unusual reaction conditions for biocatalysis begins with
the use of ionic liquid as a solvent to develop green chemistry. Then, the reaction
under extreme temperatures, use of light energy as a driving force to proceed
biocatalysis and catalysis by enzyme-metal combinations are described. The second
section covers very unique reactions such as carboxylation using decarboxylases
and carbon dioxide, Baeyer-Villiger reaction using monooxygenases, reactions in
aldoxime-nitrile pathway including dehydration in aqueous solvent and addition of
nitrile to carbonyl compounds to synthesize chiral cyanohydrin. The third section
highlights novel compounds synthesized using biocatalysts. Chiral heteroatom-
containing compounds such as chiral phosphorus compounds, polymer materials
and sugars are selected to demonstrate the usefulness of biocatalysts. The last
section describes, the use of molecular biology technique to find novel biocatalysts.
Alcohol dehydrogenase and decarboxylase are chosen as an example for the use
of techniques since detailed and interesting researches have been conducted using
these enzymes.

Through this book, I hope to introduce the novelty and future directions in
biocatalysis. Importantly, I wish to contribute to conserve and beautify the natural
environment by editing the book, showing the power of enzymes, treasure from
Mother Nature, to catalyze the necessary reaction for mankind in an environmental-
friendly manner.

Tomoko Matsuda
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Chapter 1

Biotransformation in ionic liquid

Toshiyuki Itoh

Department of Materials Science, Faculty of Engineering, Tottori University, Tottori,
Japan

Abstract

The use of ionic liquids (ILs) to replace organic or aqueous solvents in biocatalysis
processes has recently gained much attention and great progress has been accomplished
in this area; lipase-catalyzed reactions in an IL solvent system have now been established
and several examples of biotransformation in this novel reaction medium have also been
reported. Recent developments in the application of ILs as solvents in enzymatic reactions
are reviewed.

1. INTRODUCTION

Ionic liquids (ILs) have very good properties as reaction medium in chemical
reactions: they are non-volatile, non-flammable, have low toxicity and good solu-
bility for many organic and inorganic materials." It has long been recognized that
an enzymatic reaction proceeds in an aqueous buffer solution under appropriate
pH conditions and an enzyme quickly loses its activity in a highly concentrated
aqueous salt solution.> Therefore it seems a foolish notion that enzymatic reaction
occurs in a salt medium from the standpoint of biology. However, the use of ILs to
replace traditional organic solvents in chemical reactions has recently gained much
attention, and even as a novel reaction medium for biotransformation. Lipase-
catalyzed reactions in an IL solvent system have now been established,'® ™ and
several types of non-lipase enzymatic reactions have also been reported recently. I
wish to review recent progress in the area of “enzymatic reactions in an IL solvent
system” in this chapter.

2. IONIC LIQUIDS AS A REACTION MEDIUM FOR
BIOTRANSFORMATION

Cull and co-authors** reported a microbe-mediated transformation of benza-
mide from benzonitrile in a mixed solvent of IL, 1-butyl-3-methylimidazolium
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Figure 1: The first enzymatic reaction conducted in a pure ionic liquid solvent
system.

hexafluorophosphate ([bmim][PF,]), with water (1:4) in July 2000. Then Russell
and co-authors®® reported that thermolysin-catalyzed amidation of CBz-asparagine
with L-phenylalanine methyl ester proceeded in a mixed solvent of [bmim][PF,]
with aqueous buffer solution. These examples showed that the IL had no inhibitory
action against the enzymes because [bmim][PF,] was insoluble in water and enzy-
matic reactions took place in the water layer. The first example of enzymatic reac-
tion in a pure IL solvent system was reported by the Sheldon group in December
2000.* The authors successfully demonstrated two types of Candida antarctica
lipase (CAL-B) catalyzed reaction in a pure IL: CAL-B catalyzed amidation of
octanoic acid with ammonia and also the formation of octanoic peracid by the
reaction of octanoic acid with hydrogen peroxide (Fig. 1).

However, the reactions were not enantioselective ones, though the most
important aspect of the biocatalysis reaction should be in the enantioselective
reaction. We* and Kragl® independently reported the first enantioselective lipase-
catalyzed reaction in February—March 2001. Since lipase was anchored by the
IL solvent and remained in it after the extraction work-up of the product, we
succeeded in demonstrating that recyclable use of the lipase in the [bmim][PF]
solvent system was possible (Fig. 2).>

Typically the reaction was carried out as follows: to a mixture of lipase in
the IL were added this racemic alcohol and vinyl acetate as the acyl donor. The
resulting mixture was stirred at 35°C and the reaction course was monitored by
GC analysis. After the reaction, ether was added to the reaction mixture to form
a biphasic layer, and product acetate and unreacted alcohol were extracted with
ether quantitatively. The enzyme remained in the IL phase as expected (Fig. 2).
Two months later, Kim and co-workers’ reported similar results and Lozano and
Ibora’™¢ reported other examples of lipase-catalyzed reaction in June. Further Park
and Kazlauskas’® reported full details of lipase-catalyzed reaction in an IL solvent
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Figure 2: Lipase-catalyzed reaction system anchored to the solvent.

system in August 2001. Studies on the enzymatic reaction in an IL solvent system
were thus launched in 2000-2001.

We initially tested Candida antarctica lipase using imidazolium salt as sol-
vent because CAL was found to be the best enzyme to resolve our model substrate
S-phenyl-1-penten-3-ol (1a); the acylation rate was strongly dependent on the
anionic part of the solvents. The best results were recorded when [bmim][BF,| was
employed as the solvent, and the reaction rate was nearly equal to that of the refer-
ence reaction in diisopropyl ether. The second choice of solvent was [bmim][PF].
On the contrary, a significant drop in the reaction rate was obtained when the
reaction was carried out in TFA salt or OTf salt. From these results, we concluded
that BF, salt and PF, salt were suitable solvents for the present lipase-catalyzed
reaction.’® Acylation of la was accomplished by these four enzymes: Candida
antarctica lipase, lipase QL from Alcaligenes, Lipase PS from Burkholderia cepa-
cia and Candida rugosa lipase. In contrast, no reaction took place when PPL or
PLE was used as catalyst in this solvent system. These results were established
in March 2000 but we encountered a serious problem in that the results were
significantly dependent on the lot of the ILs that we prepared ourselves. The
problem was very serious because sometimes the reaction did not proceed at all.
So we attempted to purify the ILs and established a very successful procedure
(Fig. 3): the salt was first washed with a mixed solvent of hexane and ethyl acetate
(2:1 or 4:1), treated with activated charcoal and passed into activated alumina
neutral type I as an acetone solution. It was evaporated and dried under reduced



6 Toshiyuki Itoh

zZ
<\Z]

Me~
BuCl

] ~—

NN’
e Bu
bmim

CI-

M

LITFSI
Stirred at RT for 6 h,
LiCl then filtered
through a celite pad
and washed with
acetone three times

The filtrate was evaporated and the
residue was washed with a mixed solvent
of hexane and ethyl acetate (2:1 or 4:1)

l Evaporation

The filtrate was evaporated and the residue
was dissolved in acetone and treated with
charcoal and filtered through a Al,O4
(neutral type |, activated) short column

Evaporated, then dried
under vacuo at 66.7 Pa
for 24 h at 50°C

/M
NN

Me Bu

TFSI}

Figure 3: Purification protocol of imidazolium ionic liquid.

pressure at 50°C for 24 h to obtain very clean imidazolium salt. Using the ILs,
we succeeded in obtaining more reproducible results; I recommend this as also
being very useful to recycle the IL. In fact, we always recycle our ILs after the
reaction and have not wasted any in the past. We are still using ILs that have
a 7-year history. After establishing the reproducibility of our results of lipase-
catalyzed reaction, we submitted our first paper in December 2000 and the paper
was accepted on January 5, 2001. Although we lost the chance to be the first to
publish in the field for this reason, we learned many things about ILs during that
time and these are now important bases of our research group. Very pure ILs are
commercially available now and we can use them, but I imagine that all research
groups encountered the same problem in the early days of this field, because very
clean ILs are required for a biocatalysis system compared to chemical reactions.
This story highlights a very important point; we should pay attention to the qual-
ity of the IL when we evaluate the appropriate one for our desired biocatalyst
reaction.



