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Preface

Nonlinear semigroup theory is not only of intrinsic interest, but is also im-
portant in the study of evolution problems. In recent years many develop-
ments have occurred, in particular, in the area of nonexpansive semigroups
in Banach spaces. As a rule, such semigroups are generated by accretive
operators and can be viewed as nonlinear analogs of the classical linear
contraction semigroups.

In the last forty years the theory of monotone and accretive operators
has been intensively developed by many mathematicians (see, for exam-
ple, [Brézis (1973)] and [Barbu (1976)]) with many applications to nonlin-
ear analysis and optimization. This theory is closely connected with the
generation theory of nonlinear one-parameter semigroups of nonexpansive
mappings and with nonlinear evolution problems.

In a parallel development (and even earlier) the generation theory of
one-parameter semigroups of holomorphic mappings in C” has been an ob-
ject of interest in the theory of Markov stochastic processes and, in partic-
ular, in the theory of branching processes (see, for example, [Harris (1963)]
and [Sevastyanov (1971)]). The central problem in the study of such pro-
cesses is to locate the extinction probability which can be defined as the
smallest common fixed point of a semigroup of holomorphic mappings or,
equivalently, as the smallest null point of its generator.

Later such semigroups appeared in other fields: one-dimensional com-
plex analysis [Lowner (1923); Kufarev (1943); Kufarev (1947); Lebedev
(1975); Aleksandrov (1976)], finite-dimensional manifolds [Kaup and Vigué
(1990); Abate (1992)], the geometry of complex Banach spaces [Arazy
(1987); Isidro and Vigué (1984); Kaup (1983); Dineen (1989)], control the-
ory and optimization [Helmke and Moore (1994)], and Krein spaces [Vesen-
tini (1987a)-(1987b); (1991)]. For the finite-dimensional case, M. Abate
proved in [Abate (1992)] that each continuous semigroup of holomorphic
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mappings is everywhere differentiable with respect to its parameter, i. e.,
is generated by a holomorphic mapping. In addition, he established a cri-
terion for a holomorphic mapping to be a generator of a one-parameter
semigroup. (Such a problem is equivalent to the global solvability of a
complex dynamical system.) Earlier, for the one-dimensional case, similar
facts were presented by E. Berkson and H. Porta in their study [Berkson
and Porta (1978)] of linear continuous semigroups of composition operators
in Hardy spaces. It seems that the first deep study of semigroups of holo-
morphic mappings in the infinite-dimensional case is due to E. Vesentini.
In [Vesentini (1987a)] he investigates semigroups of those fractional-linear
transformations on the open unit Hilbert ball B which are isometries with
respect to the hyperbolic metric on B. The approach used there is based
on the correspondence between such nonlinear semigroups and the strongly
continuous semigroups of linear operators which leave invariant the indef-
inite metric on a Pontryagin space of defect 1. In [Vesentini (1987b)] and
[Vesentini (1991)] this approach has been developed for general Pontrya-
gin spaces and also for Krein spaces. Note that, generally speaking, such
semigroups are not everywhere differentiable, and the generator of the cor-
responding linear semigroup is only densely defined. As a matter of fact,
it turns out that the everywhere differentiability of a semigroup of holo-
morphic mappings on a bounded domain is equivalent to its continuity in
the topology of local uniform convergence. Since, in the finite-dimensional
case, this topology is equivalent to the compact open topology, the study of
complex dynamical systems generated by holomorphic mappings includes
in this case the study of semigroups of holomorphic mappings which are
pointwise continuous. On the other hand, holomorphic self-mappings of
a domain D in a complex Banach space are nonexpansive with respect to
any pseudometric p assigned to D by a Schwarz-Pick system [Harris (1979)].
Therefore it is natural to inquire whether a theory analogous to the the-
ory of monotone and accretive operators can be developed in the setting of
those mappings which are nonexpansive with respect to such pseudomet-
rics. We note in passing that the class of p-nonexpansive mappings properly
contains the class of holomorphic mappings.

It seems that the need to investigate holomorphic mappings in infinite-
dimensional spaces arose for the first time in connection with the study
of nonlinear integral equations with an analytic nonlinear part at the
end of the 19th and the beginning of the 20th centuries by A. Liapunov,
E. Schmidt, A. Nekrasov and others.

Later in the 20th century the interest in analytic methods diminished
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temporarily due to the rapid development of degree theory by J. Leray,
J. Schauder, G. Birkhoff, M. Krasnoselskii, P. Zabreiko, Y. Borisovich and
others; see the references in [Krasnoselskii and Zabreiko (1984)].

The traditional methods for solving nonlinear operator equations have
been based on either the Banach fixed point principle for contractive maps
or the Leray—Schauder principle for compact operators.

However, the application of these principles is not always possible, or
else if the operator depends on a parameter, these methods (as well as the
classical Lyapunov-Nekrasov method) give only local results.

Parallel with the achievements mentioned above, the first results re-
garding holomorphic mappings on infinite-dimensional spaces appeared in
the works of H. Cartan, R. Phillips, L. Nachbin, L. Harris, T. Suffridge,
M. Hervé, E. Vesentini, K. Goebel, T. Kuczumov, A. Stachura, S. Reich,
J.-P. Vigué, P. Mazet and many others (see the references in [Franzoni and
Vesentini (1980); Goebel and Reich (1984); Hervé (1989); Dineen (1989);
Chae (1985)]). A bridge between nonlinear equations with noncompact an-
alytic operators and the theory of holomorphic mappings has been built in
the book [Khatskevich and Shoikhet (1994a)].

In the one-dimensional case, the classical Denjoy—Wolff theorem pro-
vides information on both the location of fixed points and the behav-
ior of the iterates of a holomorphic self-mapping. Over the last twenty
years this result has been developed in at least three directions. The first
one concerns increasing the dimension of the underlying space. Finite-
dimensional extensions can be found, for instance, in the papers by Kub-
ota [Kubota (1983)], MacCluer [MacCluer (1983)], Chen [Chen (1984)],
Abate [Abate (1989); (1998)], and Mercer [Mercer (1991)—-(1993); (1997);
(1999)]. Infinite-dimensional generalizations are due, for example, to
Fan [Fan (1978); (1979); (1982); (1983); (1986); (1988)], Wlodarczyk [Wlo-
darczyk (1985)—(1987); (1995)], Goebel [Goebel (1981); (1982)], Vesen-
tini [Vesentini (1983); (1985)], Sine [Sine (1989)] and Mellon [Mellon
(1996)]. These authors used a variety of approaches and assumed di-
verse conditions on the mappings and the domains. The second direction
is concerned with analogues of the Denjoy—Wolff theorem for continuous
semigroups. This approach has been used by several authors to study the
asymptotic behavior of solutions to Cauchy problems. The third direction
yields extensions of this theorem to the wider class of those self-mappings
which are nonexpansive with respect to Schwarz—Pick pseudometrics.

It turns out that the asymptotic behavior of solutions to evolution equa-
tions is applicable to the study of the geometry of certain domains in com-



viii Nonlinear Semigroups, Fized Points, and Geometry of Domains

plex spaces. For example, it is a well known result, due to R. Nevanlinna
(1921), that if f is holomorphic in |z| < 1 and satisfies f(0) =0, f’(0) #0,
then f is univalent and maps the unit disk onto a starlike domain (with
respect to 0) if and only if Re[zf’(z)/f(z)] > 0 everywhere. This result,
as well as most of the work on starlike functions on the unit disk, can be
obtained from the identity

o " iof/ 6
%argf(re %) = Re{%l}.

This idea does not extend readily to a higher-dimensional space. Moreover,
such an approach is crucially connected with the initial condition f (0) =0.
Much later, Wald [Wald (1978)] gave a characterization of those functions
which are starlike with respect to another center. Observe that although
the classes of starlike, spirallike and convex functions were studied very
extensively, little was known about functions that are holomorphic on the
unit disk A and starlike with respect to a boundary point. In fact, only in
1981 Robertson [Robertson (1981)] introduced two relevant classes of uni-
valent functions and conjectured that they coincide. In 1984 his conjecture
was proved by Lyzzaik [Lyzzaik (1984)]. Finally, in 1990 Silverman and
Silvia [Silverman and Silvia (1990)], using a similar method, gave a full
description of the class of univalent functions on A, the image of which is
starlike with respect to a boundary point. However, the arguments used in
their work have a crucially one-dimensional character (because of the Rie-
mann mapping theorem, the de Branges theorem, and Carathéodory’s theo-
rem on kernel convergence). In addition, the conditions given by Robertson
and by Silverman and Silvia, characterizing starlikeness with respect to a
boundary point, essentially differ from Wald’s and Nevanlinna’s conditions
of starlikeness with respect to an interior point. Hence, it is difficult to trace
the connections between these two closely related geometric objects. There-
fore, even in the one-dimensional case the following problem arises: to find
a unified condition of starlikeness (and spirallikeness) with respect to an
interior or a boundary point. It seems that the idea to use a dynamical ap-
proach was first suggested by Robertson [Robertson (1936)] and developed
by Brickman [Brickman (1973)], who introduced the concept of ®-like func-
tions as a generalization of starlike and spirallike functions (with respect to
the origin) of a single complex variable. Suffridge [Suffridge (1977); (1970);
(1973)], Pfaltzgraff [Pfaltzgraff (1974); (1975)] and Gurganus [Gurganus
(1975)] developed a similar approach in order to characterize starlike, spi-
rallike (with respect to the origin), convex and close-to-convex mappings in
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higher dimensional cases. Since 1970 the list of papers on these subjects has
become quite long. Nevertheless, it seems that there has been no extension
of Wald’s as well as Silvia and Silverman’s results to higher dimensions.

The first chapter of this book is an introductory chapter which sets the
stage for the remainder of the book by giving basic notions in functional
analysis and operator theory on metric and normed spaces.

The second chapter defines differentiable and holomorphic (analytic)
mappings and presents a generalization of classical function theory to Ba-
nach spaces.

The third chapter contains material that is not usually covered in basic
graduate courses, but is needed in the study of fixed point theory in metric
spaces and semigroups of nonexpansive mappings with respect to the so-
called hyperbolic metric.

Chapter 4 contains some classical and modern fixed point principles
while Chapter 5 demonstrates a special approach to fixed point theory of
holomorphic mappings, which is based on the development of the classical
Denjoy—-Wolff Theorem in various settings.

Chapters 6-9 are devoted to nonlinear semigroup theory of those map-
pings which are nonexpansive with respect to some special metrics on do-
mains in Banach spaces. The description is most complete in the case
of nonlinear semigroups of holomorphic self-mappings of a convex domain
(which are nonexpansive with respect to the hyperbolic metric).

The last chapter consists of some material devoted to less developed
geometric function theory in infinite dimensional spaces. It demonstrates
a dynamical approach to this theory which is based on the asymptotic
behavior of semigroups of holomorphic mappings.

The latter topic is itself of intrinsic interest and is considered in more
detail in Chapter 9.

Summing up, we hope that this book may be considered a first step in
establishing bridges between nonlinear semigroup theory, fixed points, and
the geometry of domains.

We are most grateful to Ms. Galya Khanin for her meticulous typing
and for her devoted and careful work on all the technical aspects of this
book. We also thank Ms. Tan Rok Ting of World Scientific for her patient
encouragement.

Finally, we thank the Technion - Israel Institute of Technology and ORT
Braude College for their support throughout this project.

Simeon Reich and David Shoikhet
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Chapter 1

Mappings in Metric and Normed
Spaces

1.1 Topological Spaces

1.1.1 Topology

Let X be a set. A topology on X is a collection T of subsets of the set X,
satisfying three conditions:

(a) the intersection of any two elements of T is an element of ;
(b) the union of the elements of any subfamily of the family T belongs to T;
(c) the set X and the empty set belong to .

The set X is called the space of the topology 7 and the pair (X, T) is
called a topological space. When no confusion arises, we simply write “X
is a topological space”. The elements of the topology 7 are called 7-open
(or simply open) subsets.

Let 71 and 72 be two topologies on X; 71 is weaker (smaller, rougher)
than 73, or 7 is stronger (greater, finer) than 7y, if 71 C 7. It is possible
that, for two given topologies 71 and 75 on X neither 7; is stronger than
T2, nor T is stronger than 71; in this case 7; and 7o are said to be not
comparable.

1.1.2 Neighborhoods

A neighborhood (T-neighborhood) of a point z in a topological space (X, T)
is any subset of this space which contains an element U of the topology T
with the property x € U. For example, in the case of the space C of complex
numbers with the usual topology generated by the collection of open disks
in C, a neighborhood of a point is any subset of C containing an open disk
which contains the point in question.
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A set D C X is open if and only if for every x € D, D is a neighborhood
of x.

The complement of an open set is a closed set. A set that is both closed
and open is called a clopen set.

A set may be both open and closed, or it may be neither. In particular,
both @ and X are both open and closed. The family of closed sets has the
following properties, which are dual to the properties of the open sets.

e Both @) and X are closed.
e A finite union of closed sets is closed.
e An arbitrary intersection of closed sets is closed.

1.1.3 Ezxzamples of topologies

The following examples illustrate the variety of topological spaces:

Example 1.1 The trivial topology or the indiscrete topology on a set X
consists of only X and (). These are also the only closed sets.

Example 1.2 The discrete topology on a set X consists of all subsets of
X. Thus every set is both open and closed.

Example 1.3 The open intervals on the real line R = (—o00, 00) generate
a topology on X = R. The extended real line R* = [—00,00] = RU
{—00, 00} has a natural topology too. It consists of all subsets U such that
for each z € U:

(a) If z € R, then there exists some € > 0 with (x — ¢, z +¢€) C U;
(b) If £ = oo, then there exists some y € R with (y,00] C U; and
(¢) If z = —oo, then there exists some y € R such that [—oo,y) C U.

Example 1.4 A different, and admittedly contrived, topology on R con-
sists of all sets A such that for each z in A, there is a set of the form
U\C C A, where U is open in the usual topology, C is countable, and
z e U\C.

Example 1.5 Let N = {1,2...}. The collection of sets consisting of the
empty set and all sets containing 1 is a topology on N. The closed sets are
N and all sets not containing 1.
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1.1.4 Interiors and closures. Limit points

Let (X,7) be a topological space, and let A be any subset of X. The
topology 7 defines two sets intimately related to A.

The interior of A, denoted by A°, is the largest (with respect to inclu-
sion) open set included in A. (It is the union of all open subsets of A.) The
interior of a nonempty set may be empty.

The closure of A, denoted by A, is the smallest closed set including A;
it is the intersection of all closed sets including A.

It is not hard to verify that A C B implies A° C B° and A C B. Also,
it is obvious that a set A is open if and only if A = A°, and a set B is
closed if and only if B = B. Consequently, for any set A,(A) = A and
(A°)° = A°. Thus, a neighborhood of a point z is any set V containing z
in its interior.

The collection of all neighborhoods of a point x, called the neighbor-
hood base, or the neighborhood system, at x, is denoted by N.

It is easy to verify that N, has the following properties.

(

(b) For each V € N, we havez € V (so § ¢ N,).
(¢) IfV,U € N, then VNU € N,.

(d) IV eN,andV CW, then W € N,.

A topology on X is called Hausdorff (or separated) if any two distinct
points can be separated by disjoint neighborhoods of the points. That is, for
each pair z,y € X with x # y there exist neighborhoods U € Ny andV € N,
such that UNV = 0.

A point x is a point of closure or closure point of the set A if every
neighborhood of x meets A. Note that A coincides with the set of all closure
points of A.

A point z is an accumulation point (or a limit point, or a cluster
point) of A if for each neighborhood V' of z we have (V\{z}) N A # 0.

To see the difference between closure points and limit points, let A =
[0,1) U {2}, a subset of R. Then 2 is a closure point of 4 in R, but not a
limit point. The point 1 is both a closure point and a limit point of A.

Let A be any subset of a topological space X, and let A€ be its comple-
ment, i.e., A° = X\A.

A point z is a boundary point of A if each neighborhood V of = satisfies
both VNA # 0 and VN A€ # 0. Clearly, accumulation and boundary points
of A belong to its closure A. Let A’ denote the set of all accumulation points



