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Preface

Experimental realization of Bose-Einstein condensation (BEC) of dilute
atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley,
et al. (1995, 1997)] has ignited a virtual explosion of research. The
unique feature of the atomic gas BEC is its unprecedented controllabil-
ity, which makes the previously unthinkable possible. Almost all parame-
ters of the system such as the temperature, number of atoms, and even
strength and sign (attractive or repulsive) of interaction can be varied
by several orders of magnitude. The interaction between atoms is usu-
ally considered to be an immutable, inherent property of individual atomic
species. In alkali and some other Bose-Einstein condensates, we can not
only control the strength of interaction but also switch the sign of inter-
action from repulsive to attractive and vice versa [Inouye, et al. (1998);
Cornish (2000)]. The atomic-gas BEC may thus be regarded as an ar-
tificial macroscopic matter wave that act as an ideal testing ground for
the investigation of quantum many-body physics. The atomic-gas BEC
may also be regarded as an atom laser because the condensate provides a
phase-coherent, intense atomic source with potential applications for pre-
cision measurement, lithography, and quantum computation. Fermionic
species may also undergo BEC by forming molecules or Cooper pairs. Both
molecular condensates [Greiner, et al. (2003); Zwierlein, et al. (2003)] and
Bardeen-Cooper—Schrieffer-type resonant superfluids [Regal, et al. (2004);
Zwierlein, et al. (2004)] have been realized using alkali fermions, opening
up the new research field of strongly correlated gaseous superfluidity. This
book is intended as an introduction to this rapidly developing, interdisci-
plinary field of research.

Most phase transitions occur due to interactions between constituent
particles. For example, superconductivity occurs due to effective interac-
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tions between electrons, and ferromagnetism is caused by the exchange
interaction between spins. In contrast, BEC is a genuinely quantum-
statistical phase transition in that it occurs without the help of interaction
(Einstein called it “condensation without interaction” [Einstein (1925)]).
The fundamentals of noninteracting BECs are reviewed in Chapter 1.

In a real BEC system, interactions between atoms play a crucial role
in determining the basic properties of the system. Neutral atoms have a
hard core that is short-ranged (~ 1 A) and strongly repulsive. At a longer
distance (~ 100 A), the atoms are attracted to each other because of the van
der Waals force. When two atoms collide, they experience both these forces,
and the net interaction can be either repulsive or attractive depending on
the hyperfine and translational states of the colliding atoms. Under normal
conditions, a dilute-gas BEC system can be treated as a weakly interacting
Bose gas. The Bogoliubov theory of a weakly interacting Bose gas and
related topics are described in Chapter 2.

One of the remarkable aspects of a dilute gas BEC system is the great
success of the mean-field theory governed by the Gross-Pitaevskii (GP)
equation [Gross (1961); Pitaevskii (1961)]. The GP equation describes the
mean-field ground state as well as the linear and nonlinear response of
the system. Various nonlinear matter-wave phenomena including four-wave
mixing [Deng, et al. (1999); Rolston and Phillips (2002)] and topological ex-
citations such as solitons [Denschlag, et al. (2000)] and vortices [Matthews,
et al. (1999); Madison, et al. (2000)], have been successfully described by
the GP equation. This remarkable success of the mean-field theory is due
to the high (> 99%) degree of condensation of bosons into a single-particle
state, which in turn originates in an extremely low density (~ 10! — 1015
cm™?) of the system operating at ultralow temperatures (< 10~% K). The
Gross—Pitaevskii theory together with its various applications is discussed
in Chapter 3.

The linear response theory provides a general theoretical framework to
investigate collective modes of Bose-Einstein condensates and superfluids.
A sum-rule approach is also very useful for this purpose because the ground
state for a dilute-gas Bose-Einstein condensate can be obtained very accu-
rately. These subjects are discussed in Chapter 4.

Superfluidity manifests itself as a response of the system to its moving
container. A statistical-mechanical theory to tackle such problems and
some basic properties of superfluidity are described in Chapter 5.

Alkali atoms have both electronic spin s and nuclear spin i, and these
two spins interact with each other via the hyperfine interaction. When the
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energy of the hyperfine coupling exceeds the electronic and nuclear Zeeman
energies as well as the thermal energy, the total spin f = s + i, which is
called the hyperfine spin, is a conserved quantum number. When atoms
are confined in a magnetic potential, the spin of each atom points in the
direction of an external magnetic field. The spin degrees of freedom are
therefore frozen and the mean-field properties of the system are described
by a scalar order parameter. When the system is confined in an optical
trap, the frozen degrees of freedom are liberated, yielding a rich variety of
phenomena arising from the magnetic moment of the atom. Since the mag-
netic moments of alkali atoms originate primarily from the electronic spin,
this system’s response to an external magnetic field is much greater than
that of superfluid helium-3. We can expect interesting interplay between
superfluidity and magnetism with the possibility of new ground states, spin
domains, and vortex structures. Spinor condensates are discussed in Chap-
ter 6.

When the rotational speed of the container of the system is faster than
the critical frequency, vortices enter the system and form a vortex lattice.
The direct observation of vortex lattice formation [Madison, et al. (2000);
Abo-Shaeer, et al. (2001)] has attracted considerable interest in the equilib-
rium and nonequilibrium dynamics of condensates. The effect of rotation
on neutral particles is equivalent to that of a magnetic field on charged
particles. Therefore, the properties of a vortex lattice of neutral particles
are similar to those of superconductors. Furthermore, it is pointed out that
in systems containing neutral bosons that are subject to very fast rotation,
the vortex lattice melts, and a new vortex liquid state similar to the Laugh-
lin state in the fractional quantum Hall system may be realized. A brief
overview of these subjects is presented in Chapter 7.

Almost every bosonic atom has its fermionic counterpart. Fermions and
bosons of the same species exhibit the same properties at high temperature,
but they exhibit remarkably different behavior when quantum degeneracy
sets in. Bosons undergo BEC below the transition temperature; in con-
trast, fermions become degenerate below the Fermi temperature, where
almost every quantum state below the Fermi energy is occupied by one
fermion and most quantum states above the Fermi energy are empty. At
even lower temperatures, fermionic systems may exhibit superfluidity by
forming Cooper pairs via the Bardeen-Cooper—Schrieffer transition. This
is a rapidly developing field that has relevance to high-temperature super-
conductivity. We describe the basics and some of the recent developments
of ultracold fermionic systems in Chapter 8.
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It is known that BEC does not occur at finite temperature in one-
or two-dimensional infinite systems because thermal fluctuations destroy
the off-diagonal long-range order (ODLRO). In one-dimensional systems,
BEC does not occur even at absolute zero because quantum fluctuations
wash out the ODLRO. However, confined low dimensional systems can
exhibit BEC because long-wavelength fluctuations are cut off by confine-
ment. We may thus investigate interesting phenomena associated with low-
dimensional BEC, such as solitons and the Berezinskii-Kosterlitz—Thouless
transition. These subjects are discussed in Chapter 9.

Atoms with magnetic moments and polar molecules undergo dipole-
dipole interactions, which are long-ranged and anisotropic and yield a
wealth of novel phenomena. The magnetic dipole-dipole interaction is by
far the weakest of the relevant interactions in cold atom systems; yet it
plays a dominant role in forming spin textures and magnetic ordering and
produces a spectacular effect in the course of the collapsing dynamics. The
electric dipole-dipole interaction between polar molecules, in contrast, is
very strong and may cause instabilities of the system; at the same time,
it has the potential to yield several exotic phases and for use in quantum
information processing. Some basic properties of the dipolar condensates
are reviewed in Chapter 10.

An optical lattice is a periodic potential created by interference between
two counterpropagating laser beams. Atoms in an optical lattice behave like
electrons in a crystal. An optical lattice can host bosons as well as fermions,
and it offers an ideal testbed to simulate quantum many-body physics and
quantum information processing. Chapter 11 provides a brief overview of
some basic properties of this artificial condensed matter system.

Superfluids host a rich variety of topological defects such as vortices,
monopoles, and skyrmions. Those topological excitations are best described
by the homotopy theory. Chapter 12 is devoted to an introduction of the
homotopy theory, classfication of topological excitations, and an account of
am how to calculate various topological charges.

Fifteen years after its first experimental realization, the field of ultracold
atomic gases is still growing at a remarkable speed, such that coverage of
every topic of importance far exceeds the range of this or perhaps any
book. Rather, I have chosen a small number of important issues and tried
to discuss their physical aspects as engagingly as possible. Many of the
phenomena that have been observed in the past decade and those that
will possibly be observed in the near future are of fundamental importance
because of the very fact that they are being “seen” on a macroscopic scale.



Preface ix

If this book succeeds in conveying even a portion of the fascination inherent
in this field, it will have well served its intended purpose.

This book derives from a set of lecture notes delivered at several univer-
sities over the past decade or so. I have benefited greatly from students and
colleagues who actively participated in the class and collaboration. Special
thanks are due to Rina Kanamoto, Yuki Kawaguchi, Michikazu Kobayashi,
Tony Leggett, Hiroki Saito, and Masaki Tezuka. I would like to thank all of
them for their questions, comments, and criticisms that helped me clarify
my thoughts and improve the presentation of the material in this book. I
am grateful to A. Koda, Y. Ookawara, and A. Yoshida for their efficient
editing and preparation of the figures.

March 2010
Tokyo
Masahito Ueda

Revisions and corrections will be posted on:
http://cat.phys.s.u-tokyo.ac.jp/ ueda/E_kyokasyo.html/
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Chapter 1

Fundamentals of Bose—Einstein
Condensation

1.1 Indistinguishability of Identical Particles

Quantum statistics is governed by the principle of indistinguishability of
identical particles. Particles with integer (half-integer) spin (in multiples
of h, where h is the Planck constant divided by 27) are called bosons
(fermions). Bosons obey Bose-Einstein statistics in which there is no re-
striction on the occupation number of any single-particle state. Fermions
obey Fermi-Dirac statistics in which not more than one particle can occupy
any single-particle state. The many-body wave function of identical bosons
(fermions) must be symmetric (antisymmetric) under the exchange of any
two particles. This symmetry requirement drastically reduces the number
of available quantum states of the system, resulting in highly nonclassical
phenomena at low temperature.

To understand this, let us suppose that we obtain a wave function
®(&1,&2) of a two-particle system by solving the Schrédinger equation,
where & and & represent the space and possibly spin coordinates of the
two particles. For identical bosons (fermions), the symmetrized (antisym-
metrized) wave function is given by

U(6r, ) = %[@(sl,@) +B(E, 1)), (1.1)

where the plus (minus) sign indicates bosons (fermions). The joint proba-
bility of finding the two particles at & and &; is given by

(61, )7 = {1860, &) + [2(E, &)
+ 2Re[®* (&1, £2)P(&2,&1)]}, (1.2)

where Re denotes the real part. Because of the last interference term in
Eq. (1.2), the probability of finding the two identical bosons at the same
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coordinate, |W(€,€)|?, is twice as high as |[®(€,&)|?, which gives the corre-
sponding probability for distinguishable particles. In contrast, for fermions,
|W(&,€)|? vanishes in accordance with Pauli’s exclusion principle.

Such a bunching effect of bosons becomes increasingly pronounced when
the number of bosons is large. For N number of bosons, the symmetrized
wave function is given by

1
‘I’(£17€27"'1§N)=ﬁ . . Q(gilagiza“'1§iN)7 (13)
(11,12‘.,.‘“\,)
where the summation over ii,42,--- ,in is to be taken over all N! per-

mutations of 1,2,--- ,N. The joint probability of finding all N bosons
at the same coordinate is thus N! times that for distinguishable bosons,
|®(&,€,---,€)|%, due to the constructive interference of the permuted prob-
ability amplitudes:

The constructive interference of the probability amplitudes is effective
only when the wave packets of bosons overlap each other. At temperature
T, each wave packet has a spatial extent of Az ~ h//MkgT, where M
is the mass of the boson and kg is the Boltzmann constant. By setting
Az equal to the average interparticle distance n_§, where n is the particle
number density, we can estimate the transition temperature T of Bose-
Einstein condensation (BEC) to be

2
kpTo ~ %n%. (1.5)

Because of the large enhancement factor of N!in Eq. (1.4), a large num-
ber of particles suddenly begin to condense into a single-particle state below
Ty. When N is macroscopic, the onset of this condensation becomes promi-
nent, endowing BEC with a conspicuous trait of quantum phase transition.
Substituting n = N/V, where V is the volume of the system, in Eq. (1.5)
gives
2

K2 s
ksTo ~ Ns. 1.6
BTo ~ — (1.6)

2
3
Here, h2/(MV %) gives an estimate of the energy gap between the ground
state and the first excited state. Classical particles would condense into
the ground state below the corresponding temperature Ty ~ h?(kgM 4] ).
Equation (1.6) shows that BEC occurs at a considerably higher tempera-
ture; further, the large enhancement factor N 3 can be attributed to the
interference effect as discussed above. A more quantitative treatment de-
scribed in Sec. 1.2 will validate Eq. (1.5).
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1.2 Ideal Bose Gas in a Uniform System

The grand partition function Z of a L system of particles with the Hamiltonian
H and particle-number operator N is given by

E = Tre AH-uN) (1.7)
where 3 = (kgT) ™!, Tr denotes a trace operation, and the chemical poten-
tial p serves as a Lagrange multiplier that is to be determined so as to fix
the average number of particles to a prescribed value.

For ideal (i.e., noninteracting) identical bosons with the dispersion re-
lation e = h?k?/2M, H — uN is given by

ff - ,LI.N = Z(Ek - Il)ﬁk, (1.8)
k
where ny denotes the number operator of particles with wave vector k.

Substituting Eq. (1.8) in Eq. (1.7) gives
oo
E=]] D (ePleaedym, (1.9)
k nk:0

For the geometric series in Eq. (1.9) to converge, e?(#~<) must be less than
one. It follows from €, > 0 that

1 < 0. (1.10)
Then, Eq. (1.9) gives

E=l—m
kl e(#fk)

The thermodynamic potential €2 is defined in terms of =

1 1
=-——-InE==>) In(1 -l =N"Q,, 1.11
ﬂXk: ( )= Z " (1.11)

B
where
O = %mu — ePlu—e)), (1.12)
The average number of particles with wave vector k is given by
Nk = _h ! , (1.13)

6# eﬁ(fk_l“') -1
which is referred to as the Bose-Einstein distribution function. The average
total number of bosons is expressed in terms of the chemical potential p as

1
V=¥ s e

For a given IV, p is determined such that it satisfies Eq. (1.14).



