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PREFACE

There has been a growing awareness that the undergraduate student
“in electrical engineering requires a broad and deep understandingof the

prineiples of electric and maguetic fields as a background for the rapidly ,

(levejopmg areas referred to as electromagnetic engineering by some and
.- a8 energy conversion by others. Thus, in addition to the general aspects
- of electromagnetic fields, a discussion of the sources and points of develop-
ment of forces and torques in such fields, and the general’ features of
vnergy storage, energy flow, energy transfer, and energy conversion

require added emphasis. qmce many of these requirements are differ-

ent from those of the past, it is not surpiising that most previous texts -

" on electric and magretic ﬁelds do not quite satisfy the needs, and new
books in this classical field are juqttﬁed This book \has been vm{ten
to meet the mtroductory phase of the needs of the electrical engmeermg

“student.

As a background to the text, it is dswsu*ned that the reader is familiar
with the calcuius and that he has an understanding of thé important con-

cepts of classwdl mechanics. ‘Where any special condepts are required, -

these are 1npr0duced within the coptext of the development of the book.
A number of special features have been adopted in the development

of the text material. These include pedagogical ideas as well as a changed
 emphasis from the t.echmcal content of’ the past ~ Among thesehl"é the

following: :
" Bince the nresenfamon of electric and mgnetlc fields has long been a
\challenge to educators owing to the mathematical compleéxity inherent
in such a study and the rather elusive character of fields, this text presents
the material in order of increasing complexity of field concepts. It begins
with a consideration of scalay fields and then leads inte vector fields.

The standard ireatment of electric and magnetic fields has been aban- o

doned in favor of that suggested by K. Kiipfmaller’s'book, “Rinfuhrung
in die theoretisché Elektrotechnik.” This -order of presentatlon has
been classroom tested with very satisfactory results.

To. emphaslze the fact that the lumped circuit parameters, .emsta.nce,

capacitance, and inductance, are quantities defined from static field con- -

sideratiens, these and related concepts proeeed from the systematic’
e‘*(ploltatlon of static fields before dynamic fields are mtroduced )
Considerable use has béen made of the punc1ples of v1rtual dmplace—
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L CHAPTERL i s

, ~ THE ELECTRIC FIELD IN ' G
' MULTIDIMENSIONAL CONDUCTORS .

This chapter w1ll introduce the basic field ('onr*ep.* ’r‘n‘ough a study of
the experimental results which may be cbtained with the'aid of an elec-
trolytic tank, or equivalently through-the use of a flux vlotter provxded
with Teledeltos’ paper. ‘The field plots. so obtained for any - epe(nﬁpd
field configuration will be examined physically, and from this physical
field distribution, which will be described in mathgmatics! terins, many

of the 1mport’ant tield quantities will be developed.

{-1. The Current-fiow Field, "Qur study will begm with an expen-
ment. This experiment may be performed by ‘the student with equip-
_ment which is available commercially or which may be constructed
focally. The equipment is. ge: )erally referred. to as fluz-plotting equip-.

ment. In one form, it consists of & sheet of conducting Teledeltos paper.
" This paper may be cut to any desired shape, to represent & specified ~
configuration. Electrodes of prescribed shape may be attached to the
paper in specified positions. . By appl ring & known source of potential :
between the elgctmdes, a current, ‘known e & cenduction current, wiil

" . flow between the elecirodes. By means of a high-impedance voltmeter,
it s possible to explore the potential distribution over the surface of the
conducting paper. Of cqurse, the equipment may congist of a sheet of
iron on dn insulated support. . 1t might alsa consist of a nonconducting
shallow tank which contains a upiforin layer of condueting liquid. A
typical ﬂux-plottmg equipment is illustrated in Fig. 1-1. - :
Suppose that such'a typical flux-plotting equipment consists of a'large °

. rectangular conducting surface, with small circular electrodes which have

. been attached toit. Ij the conducting sheet is sufficiently large, then the

system approximates a pair of conducting electrodes immersed in an infi- - -

nite eonducting plane. Thxs system is closely analogous to a pair of

wires imamersed in an infinite conductmg medium, a cross section of which is

being explored. The situation is substantially that illustrated in Fig.
1-2. “The electrode terminals are connected to the source of power, and:

. the voltmeter will be used to explore the field. That a potential vanat;on /R

should be expeuted follows from the fact. that r'm'.:ent W}.I flow between

v, = 175
ve
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~the terminals attached te the conducting sheet. It is this current-flow :
field that is to be carefully investigated.”

Buppose that it is possible to adjust the potential o’f' the source go that

the indicating voltmeter reads 100 scaie dzvxsxons wken connected between

Fra. 1-1. Photegraph of 2 commerma) ‘flux-plotting equipment. (Cour&&y Sunshine
buavné?ﬁ«c Instrument.), ., - ' .

i
W T r\ 7
Yl X
\ i \\
savolts” | \50volts
Tx'] . T,
V)
¢ N
- i 2z p.
i - N
100 vons

Fm 1-2. Flux-plotting eqmpment for the system under survey

the two electrodes For convenienece, suppose that each scsle division
is 1 vols, so that the maximum scale readmg 18 100 volts. Suppose, now,
that ene of the voltmeter probes, say, P1, is attached to terminal 7'1 and
1t 18 desired to search for all points en ‘dhe sheet! whlch w1ll ;ndlcate 50

\
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volts ‘on the voltmeter V. By actually perfomung this expenment it FO
will be found that the 50-volt level of potential occurs on the perpen- =
dicular bisector of the line between the two terminals T'1 and T2. Sucn =
a result would be expécted from the qymm«*trv of the arrangement Limae
Clearly, if probe Pl is plaeed anywhere along this line and pmbe P2 in: :
placed on terminal T2, a 50-volt reading will aiso reauit X
Now & gystematic exploratign of the field is Yo be unde:taken Con-_
| nect probe P1 to terminal 71, and search the tield for the,curves of 10 3
. volts potential difference by moving probe P2 over the field. . Whed | -
" this has been completed and L‘he curve of the 10-volt potential dxﬁerence

Ly . Fro.'1-3. Equipotential lines m the ctirrent field.

has been dyawn, the process will be repeated for the 20-volt curve, then ©
the 30-volt curve, ebe., until the entiré fisld hms becu systematically
explored. The curves of equal potentiai difference are referred to as
eguipotenital lines, or curves. A system of ‘curves>will result, as illus-
trated in Fig. 1-3. . Clearly, if both probes are applied to two points of
the smme eqmpotentml no- deflection will be noted on tho voltmpter
This is, in fact, the real meaning of the term equipolenital.

If the conducting material were to be of substantial thickness, then .
points of equal potential difference could be found mthm the material. .
These points constitute surfaces whose: base lines sre the eqmpo‘nennalv
on the surface of the sheet. The surfaces are referred to as eguipotential
surfaces. As an extension of the dgbove, there is no potential difference
between any two points of the same equipotential surface.

1-2. Potential and Potential Difference, . Each eguipotential curve of ‘
Fig. 1-3 has been labeled with a number whch apf\clﬁes the potentis)
difference relative to T'1, which has been aemgned the valus zeco and is
being chosen as the reference or datum, of potential. = Also, the -+ sign ;
applied to the numerical value of potential difference has heen chasen to £
be consistent with the designated reference positive potential. Similarly, '
the reference current direction is here being chosen to coincide, with -
the requirement that the direction of eonventional current be {rom a =



%
r

region of higher to a region of lower potentiak That is, the current in
the conducting sheet will be from 72 to T'L when the applied potential
has the reference polarity. Clearly, if the terminal connections are inter-

4 . . . “ELECTROMAGNETIC FIELDS [Caar. 1

changed, the direction of the current will reverse although the same dis-

tribution of equlpotontmls will result. - Now, however, the equipotentials
will carry — ‘ngns in order to denote that they are'the neg;a*lveq of the
previous dats.’

The reference point, or datum, of the potential is entirely arbitrary, ss
all’ eﬁ'ects depend only on differences of potential. That is, 71 may be
chosen at any desired reference level without in any way ajfecting the

equipotentials in the field. . All that happens is that the equipotentials

in the-field will be either increased or decressed, depending upon the
specified refererice level of T'1. = Converselyyany point.of the field may be
chosen as the refereiice point, or datuny, of potential. For example, syp-

" pose that a point on the bisector (shown as the +50 in F ig. 1-3) i8 chosen

as the z_ero reference level of potential. In this case, all potential values
~of Fig. 1-3 will be reducéd by the constant value of 50 volts, = T1 will

now have assomated with it the demgratwn —50 volts, and T2 will be:

- designated as’ +50 volts. ~All other values will be correspondmgly

changed‘ The potential difference between any two points in the field

is independent of the ‘choice of reference poirit of potential. Clearly,

therefore, it follows that the potential at any point of the field is equal

to the pobertla.l difference between this‘point and a reference pomt - Ceu-

- versely, it follows that the potential difference between two points of the
field is equal to the difference of potential between these two points.

Consider, therefore, that the potential of point @ of the field is given

.. by the symbol $. Telative to some arbitrary point as reference. Corre-

spondingly, the potential of some other point b of the field relative to the

" same arbitrary réferenr'e pomt is given as ¢s. 'The potential difierence

" between these two pomts is . A

G Ve = ¢a — ¢ I (1)

The numerical value fgiven by Eq. (1-1) may be pesitive or negative,

depending upon whether ¢, is greater or less than &, 1o aveid con-.

fusion, in what follows V. wili denote the potential drop from point a to
point b. - If, therefore, Vs is negative, this'mérely means that the poten-
tial of point a is less than the potential of point b relative to the same
reference points. .. . ’

1-3. Vectors and Two Vector Operations. To continue with the

descmptmn of current-ﬁuw ﬁelds, it will be found desirable te do so in

terms of vectors and certain vector operations. Consequently. this see-
" tion will serve ag a mathematical digression to introduce these concepts

Physical quantities may be of two general clagses, Those quanmles :

M
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which can be described by a single number as, for example, tempemture
and humidity, are known as scelar quanutnes Those quantities, sueh -
* as force and velocity, which have a direction in space as well as a.Mag-
nitude are known as veclor qu&ntltms Vector quantities are represeﬁted’
geometrically by u\caus of ‘straight lines with arrowheads, the arrow

pointing in the direction of the vector, the length being proportmnal to

its maguitude. They are represented symbohcally by boldface type.

Attention is specifically directed to the difference between the coinplex

number (phasor, sinor) of a-¢ eircuit. theory and the space vector here
- being considered. z '

Tha sum of fwo ve(-torb A and B m the vector
C, or ' e
A'—F- B=C : 7(1-2)

Observe carefully that, since A and B each possesses
a magnitude and direction in space, C will also.
possess both magnitude ‘and direction. ~Geometri-

- cally, the mathematical process is that illustrated in
Fig. 1-4. ' Thus, the vector C is obtdined from A
and B by a paralieiogram process, in which the origin 3
of B is made to coincide with the terminus of A, and with C. havmg the
origin of A and the terminus B as its origin and terminus, respectively.
Observe from the diagram that mtercha,ngmg A and B does not aﬁect the '
- resultant C, whence

Fra. 1-4. Addition of
veetors.

A+B=B+A ) ‘ .-.(1-3)

‘> It fol)owa from this that addition follows the commutative Iaw. The '

addition of more than two vectors is readily accomplished geometrically

by continuing the process defined in Eq. (1—2\ adding successive vectore,
to the result of the previous operstions.” Thus, it readily follows that
such an addition follows the assocm,te law,, namely, .

(A +By+C = A+<B+C) a4y

It is noted that vectors, and the operatmn of Vector arithmetie, have .

been defined without reference tg any system of coordinates.  In fact,
it will be found that all the subsequent vector operatlons will be ex,n essed
in general térms. Often, however, it is convenient to refer. the vector
and its operations to s particular system of coordmates, it this will be
the secondary and not the primary approach to our study of vector anal-
ysis. In faet, in this text, we shail limit consideration to three different
orthogonal systems, the rectangular, eylindrical, and sphenoal gystems
of axes, with primary consideration given to the rectangular system of
axes. 3 i
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 Refer to Fig. 1-5, which shaven veetor A oriented with respec,t to 5
ca,rtesmn system of, coordinates.” The unit vectors i, 4§, & (vectors of
unit magnitude) are chosen in the X, ¥, Z dn'ectzons, respecqvehr, &8s
iljustrated. But, based on Eq. (142), it is possible to define a vector in

" termsof a number of other vectors, It is comvenient, therefore, to express _
the vector A in terms of the sum of three vectors parallel to thé rectan~ |
gular (ortﬁogona}) axes, thus, ' :

A= A,1+A,i+4,k ST '_ (1-5)

/7

In this expressxon ‘there appears the product of a vector a.nd a scalar.
Buch a product is defined as a vector having a magnitude equal to the

f

an 1-5. Roﬂausmar components of vector A.

product of the sc alar amd the magmtudP of the vector (in this case, unity),
"and having a direction that is the directicn of the original vector. The
K sc&lam A, Ay, 4, are. the mmponents of A and are given (see Fig. 1-5) by

‘ = A cos, ]
; o . A =Acosd, (1-6)
x e ' : A‘==Acbs0 ‘

where @,, 8,, 8, sre the angles between A and the posxtwe directions of the 5
axes and where' A is the magnitude of A.~ q
To find the vector sum of two vectors A and B requires that each vector
*, b yeferred to the same set of axes. Thus, for two wctors havmg the -
three components; v 4

- A+B=-(A,1+A,,J + A.k)+(B,x+B,j+B.k)
or A+B=(ﬂ=+Bz)x+(A + B + (4, + Bk

This equation follows directly from the pssocmtwe propen.‘v of Vect.or
addition, as in Eq. (1-4). ;
- Cons:dor now the product of two vectors There are two types of

(1-7).\‘ ‘

g

! B g LR
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produect, the sealar product and the vector product. These names serve
to indicate that the result of e respective multiplication in the first
case is a scalar and in the second case is a vector. Since our present
needs involve only the scalar product of two vectors, we shall limit our
discussion to these. -, M, ' ‘ : :

' By definition, the scalar, or dot, product of two vectors A and Bisa
scalar quantity and is the produet of the magnitudes of the vectors and
the cosine of the angle between them, thus, . ' ' ;

A-B = AB cos (A,B) o (-8

Note that the dot “between the vectors is essential to the expression.
Clearly, from this definition, :

- A-B=B-A. " - (1-9)
‘. . R RS : %
and the scalar preduct obe};s the commutative law. Also, the scalar
product of a vector with itself is simply R T ! <A
| AvA = A? (e

since the angle between the two vectors is zpro. Of course, the scalsr
product of two vectors which are petpendicular to each other will be-
zero,  owing to the presence of the cos 90° that would appear in the
expression for the dot product. et ; ML

The scalar product-of A-and B, given by Hq. (1-8), may be expressed
in terms of their rectangular components, thus, -

- e )

A-B = (Ai+ A+ AX) - (Bd+ B,j + Bk) .

Note, however, that g .

v iel=j§= fk==l

and / i =jk=k-i=0 )

Therefore, it follows that T 3 ‘
A-B=AB.+ AB, + AB, - | (1-11)

' This shows that the sealar product of two vectors is aqual to the sum of
the products of the corresponding compenents. s
_i~4. Potential Gradient arid Line Integrat. In addition to considera
“tion of the potential at ali points of the field, it is often convenient to
consider the gradient of the potential at all points of the field. Tn order
to understand the meaning of this term, consider two adjacent equipoten-
fial surfaces, one of which is denoted ¢ and the second denoted’ as,
& + dé, as illustrated in Fig. 1-6. Gonsider the point a on oue equipo-
tential and two points b #nd ¢ on the adjacent equipotential. Point b
is chosen o lie aloﬂg,t}m norial drawn to the equipotential at point a.

{
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*The dxstance betWeen the adjacent eqmp-otentmk; along the direction of
the chosen normal, that is, the distance between points ¢-and b, is desxg—
nated as (in Moreover, as illustrated in Fig. 1-8, the unit, normal nis:
a space—vector quantity, and its direction would Ghange, in general, if the
point @ were chosen elsewhere on the equipotential surface except when
- the surface is aplane. The magnitude of the normal n will be chosen by.

" definition to be unity, and in the present case the positive direction of the

‘ normal is taken i in: the direction of increasing

potential. s
Consider now the quaniity dé/dn, which .
_specifies the greatest space rate of changs of
potential, and which is the slope, or gradient,
of the potential field at the point a. Mathe-
matically, the quantity diseussed, when writ- |
ten with its associated direction n, is called the ' -
, qrua.wnl of ihe potential, or :

o+ do

de=9%
gx"ad ¢ = an B (1-12)

Physically, therefore, the potential gradient,
" grad ¢, is a measure of the maximum slope or
_ the maximum rate of change of potential with -
Fia. 1-6. Adjacent equip>- distance ir the direction of the increasing
tentialg i in a potential field,
‘ potential. For example, if one were to stand
on the side of a hill, the gradient would be a measure of the slope in the  °
direction of steepebt ascent. In this case, the gradient is the- tangent '
of the angle between the horizontal and the side of the hill. Often,
in practx(,e the slope.is specified as, say, }{po. This means that the
ground rises 1 ft in each 100 of horizontal distance i in the specified dirée~
tion. Note particularly that, since the direction of steepest ascent is
specxﬁed the gradxen\‘ has both magmtude and direction and is tnelefore '
a vector quantity. In vector analysis, it is often customary to write
the symbol V instead of the lptters grad, where the symbol V is called th
dfl operator. . Using this notamou ‘Bq. (1-12) may be M‘luten as

/ i

s &
, gmé¢ V¢ =--n

Note from F1g 1-6 that

\ <

(1-13)

dn = dl cos a
whiance ‘qu i (1-13)_ btecor'nes\

%’.; lgrac o \cos a

o
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which i3 the directional derivative of the potential ¢. “This i is the rate of

change of ¢ in a particular dIrectmn and depends on the dn'ectxon selected.

If a rectangular syst&m of axes were to be specmfied wlnch was fixed at

point @, then the directional denvatwe of ¢ in the dxrectlon of the X axis *

- would be |
';3— = (grad é)(cos a; =i grsd.'qb

Wlth correspondmg terms for the ¥ and Z dxrectlons ‘Thus, for a genera.l
direction which possesses comp(ments along the threé axes, it follows that -

/

a 8¢
grad ¢ = V¢ = + ay + y
o
The cmre.spbndmg forms for the gradtent in cyhndncal and sphencal

‘ Loo"dmates are Wntten down, wuhout proof

(1-14)

%y

C yhndrwal coordinates

I ! 1
grad ¢ = 2a, + 2 aa at a0 Tase)
Spherzcal coordmates . . PR
grad ¢ = ——ar + 0% + . ¢af : (1\-156\
' r 6 & r sm smody T, . 4

" where the a’s are unit vectors m the dlrectmu specxﬁed by the subsenpt
with positive directior in the direction of increasing variable.

1t is now posstble to reverse the foregoing considerations and consider -
the question of the difference of potential between the two points a and
b. By definition, the difference of potential between these two points
is the potential difference that exists between these two pomts Accqrd-
ing to Ea. (1+13), this potential difference is d¢; so that -

= (grad ¢)xn

where the subscript n denotes that the combonent of Qx rad ¢ is chosen in
the directicn n. * This is, of course, jugt grad ¢ itself. The total poten-
' tial difference between the pomts a and b is thus ngen by t.he expressmn

Vie =00 = 6 = [ d¢'= j(grad $)udn © (1-16)

Some Mmple mathemstical mampulatlons of this expression lead to
~ useful forms. ~ Suppose, therefore, that the right-hand side of the expres-
sion is multiplied and divided by cos «. - This yields

-

CERORIRA Ty e e TR
e 00 5 'gm‘d’)"'cos f'.t;osi ' ..

- 3
Vis
\
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‘This equation may therefom be wntten in the form’
Vi =y = $u = j (grad 4}, dl (1-18)

| [n the light of Eq (1-8) for the scalar multlphcatxon of two vecto,rs,
Eq. (1 18) may now be written in the following iorm

g -Vu='¢a-‘¢o='/dl-grad¢ _
% : s T (1-19)
. or ‘ i =¢a~¢a=‘f dl-V¢

In these exprusmns, dl has now béen written as a vector element of pat h
length and hag the mealuug mmcated in Fig. 1-6.

Fia. 1-7. "Line integral of’ the potential gradient over a closed path. /

Suppose that Lhe two points a and b now denote any two poiuts of the
‘ﬁeli as illustrated in Fig. 1=7. The.system of lines is to denote equipo-
tentials of the field. The total potentizl difference between the points
" @ and b along path 1 is simply the summation of the potentizl differences
along all elements of this path. That is, S

VL Te=e—de=[ide
' #h 1

. In a similar way, the total potentisl dxﬁerence between the pou,t,s b and
6 aleng path 2'is given by the expression ri
V= b= oo fde G

These two qua.ntltlea are the negatrves of each ether g0 that
L) \ ) ; ‘ B Vab . Vs e | ' (]'20)

R

If in Eq (1~v18) (grad é@; is posutwe if its dlrectlou cqmcxdes with the

v



