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Preface

Preface

Constructing nonlinear parameter-dependent mathematical models is essential
in modeling in many scientific research fields. The investigation of branching
(bifurcating) solutions of such equations is one of the most important aspects
in the analysis of such models. The foundations of the theory of bifurca-
tions for the functional equations were laid in the well known publications
by A.M. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating lig-
uids) and E. Schmidt (1908) [1]. The approach proposed by them has been
throughly developed and is presently known as the Lyapunov—Schmidt method
(see M.M. Vainberg and V.A. Trenogin [1, 2]). A valuable part in the founda-
tions of the bifurcation theory belongs to A. Poincarés ideas [1].

Later, to the end of proving the theorems on existence of bifurcation points,
infinite-dimensional generalizations of topological and variational methods
were proposed by M.A. Krasnoselsky [1], M.M. Vainberg [1] and others. A
great contribution to the development and applications of the bifurcation theory
has been made by a number of famous 20th century pure and applied mathe-
maticians (for example, see the bibliography in E. Zeidler [1]).

Well known are applications of the bifurcation theory in mechanics (convec-
tion; wave theory; oscillations; aero-hydro-elasticity; bending of bars, mem-
branes and shells) described in profound investigations of A.I. Nekrasov,
T. Levi-Chivit, N. Kochin, D. Stroyk, M.A. Lavrentyev, K.O. Fridrichs, J. Stoker,
D.Ioseph, J. Keller, J. Toland, A.M. Ter-Krikorov, V.A. Trenogin, L.I. Vorovitch,
A.S. Wolmir, M. Berger, Ya.I. Sekerzh-Zen’kovitch, V.I. Yudovitch, B.V. Logi-
nov, L.S. Srubschik, V.V. Pukhnachov, V.V. Bolotin and many others.

The sphere of applications of both the Lyapunov—Schmidt method and the
theory of bifurcations has been extending since the time of their advent. Cur-
rently it has embraced many new areas of natural science, economics and en-
gineering. Specific nonlinear problems of phase transition and plasma physics
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(A.A. Vlasov, V.P. Maslov, V.V. Vedeniapin, J. Batt, H. Neunzert, G. Rein,
L. Arkeryd, P.L. Lions, C. Bardos, P. Degond, R. Glassey, Y. Guo, J. Dorning,
M. Hesse and K. Schindler and others) are to be noted in this connection. Some
of such applications are considered in our monograph.

In recent years the Lyapunov—Shmidt method has been applied in the bi-
furcation theory not alone but in combination with methods of the theory of
representation and group analysis, finite-dimensional topological and varia-
tional methods, methods of the theory of perturbations as well as the theory
of regularization. Such combined approaches have given us the possibility to
prove more general theorems of existence of branching solutions, conduct their
algorithmic and qualitative analysis, and develop asymptotical and iterative
methods. It is no accident that this has allowed mathematicians to solve new
challenging problems of theoretical and applied mathematics.

Our monograph presents some results obtained in the abovementioned area
by the group of authors — Russian mathematicians — during the recent 25
years. The corresponding general theory of operator and differential-operator
equations in Banach spaces is constructed. Its use is illustrated by a number
of natural science examples of application to boundary value problems and to
integral and integro-differential equations.

The limited possible size of the monograph has allowed the authors to include
only some part of the total set of results in the area. Many other interesting
results of several authors (global existence theorems, cosymmetry by Yudovich,
projective-iterative techniques, etc.) have remained beyond its scope.

The monograph includes 7 chapters. Chapter 1 outlines linear problems.
Some results needed for further analysis — generalized Jordan sets of linear op-
erators; abstract techniques for construction of regularization algorithms (R.A.)
in the sense of Tikhonov-Lavrentyev needed to work with linear equations; it-
erative methods of computing both isolated Fredholm points and elements of
generalized Jordan sets of operator functions — are considered here. All these
concepts and constructions are used throughout the monograph.

Chapter 2 describes an elementary approach to proving existence theorems
and computing asymptotics for the branches of real-valued solutions of nonlin-
ear operator equations of the form

F(z,)) =0 (1)

in the neighbourhood of the branching point \g. This approach, which can be
traced back to works of A.M. Lyapunov, A. Poincaré, E. Shmidt and L. Kro-
necker, extensively employs the analysis of branching equations with the aid
of V.A. Trenogin’s Jordan type of chains, Kronecker’s and Morse—Conley’s
index theories, as well as methods of finite-dimensional topology and simple
variational techniques.
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Chapters 3 and 4 discuss the problem of obtaining branching solutions for
equation (1) by iterative techniques. The equation is assumed to be given ap-
proximately (by an approximation to equation (1)), and errors are assumed
possible in the process of computations (i.e., the computational process itself
can contain errors). Chapter 3 describes some techniques of constructing regu-
larizing equations whose solutions uniformly approximate the branches of the
exact solution and can be obtained approximately, for example, by the Newton—
Kantorovich method. Accumulation of errors in the process of constructing
asymptotics, and also the technique of parameter continuation are considered.
Chapter 4 describes the employment of power geometry methods proposed by
A.D. Bruno [1] in order to make uniform the solution branches, on the basis of
which the N-step method of sequential approximations in the neighbourhood
of branching points is constructed. The theory of branching for interlaced equa-
tions (see also chapter 5) is proposed here. This theory gives us the possibility
to investigate different branches of solutions dependent on free parameters.
The Lyapunov—Kantorovitch method of convex majorants, which is introduced
here, is employed for estimating the domain of existence and possible extension
of solution branches.

In the multi-dimensional branching theory, nonlinear equations often have
families of small solutions depending on one or several parameters. As a rule
these parameters have a group sense — the nonlinear equation turns out to
be invariant (= equivariant) with respect to some group of transformations.
In physics the case in which there are non-group parameters is understood
as random degeneracy. For the boundary value problems group symmetry
is usually stipulated by symmetry of the domain. In computing families of
branching solutions and asymptotics, group invariance simplifies constructing
and investigation of the branching equation (BEq), which is equivalent to the
nonlinear problem.

The very first results concerned with application of group symmetry in the
theory of branching belong to V.I. Yuodovich [3, 4], who had considered “one
case of branching in the presence of a multiple spectrum” as well as the appli-
cations to computation of secondary stationary fluid flows between one-sided
rotating cylinders.

The subsequent development of the bifurcation theory under group invari-
ance conditions was continued by B.V. Loginov and V.A. Trenogin [1]. In [1]
the group stratification method for constructing a reduced BEq was proposed
(see wide bibliography of the monograph [10] (B.V. Loginov) — the survey
of results up to 1980). Particularly, in [2] (B.V. Loginov, V.A. Trenogin) a
theorem on inheritance of the initial nonlinear problem’s group symmetry by
the corresponding BEq has been proved.

Since the mid 1970s symmetry methods in the branching theory have been
elaborated independently by western and soviet mathematicians. The theorem
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of inheritance was later proved and applied to the Benard problem by D.H. Sat-
tinger [2, 3]. Some results concerned with pattern formation in branching prob-
lems were also obtained by B.V. Loginov and applied to the statistical theory
of crystals.

The most general result — existence of a bifurcation near the odd-multiplicity
eigenvalue of the analytical operator function of a spectral parameter — was
proved by N.A. Sidorov and V.A. Trenogin (1971, see chapter 2) who had
applied the theory of mapping degree directly to the BEq. In the equivariant
branching theory, this result allows one to obtain (see Chapter 5) existence
theorems for the solutions which are invariant with respect to the subgroups,
in particular, with respect to normal divisors — the most general result of
A. Vanderbauwhede’s “equivariant branching lemma” [3].

In the 1980s monographs by A. Vanderbauwhede [3], M. Golubitsky, I. Stew-
artand D. Schaeffer [1, 2] describing various applications were published. They
suggest detailed surveys of the results obtained by mathematicians of western
countries in the theory of equivariant branching. The main tool of the inves-
tigations [1, 2] is the singular theory of smooth mappings. However, in our
opinion the Newton type of polytope methods developed by A.D. Bruno [1]
provide more insight since these assume investigation of BEqs of any order n
of degeneration of the linearized operator (see Chapter 4).

The theorem on inheritance of group symmetry had given a new approach in
the theory of equivariant branching — application of methods of group analysis
of differential equations (L.V. Ovsyannikov [1, 2]). These methods allow one
to solve the problem of constructing a general form of BEq at the expence
of inherited group symmetry in cases of both stationary and non-stationary
bifurcations.

Chapter 5 is devoted to applications of ideas of symmetry in the theory of
bifurcations. The principal objective implied consideration of applications to
problems of mathematical physics as well as suggestion of illustrative exam-
ples. In the first two sections of this chapter the authors investigate properties
of hereditance of symmetry by the branching equation. The theory of resolv-
ing systems has been applied in section 2 for proving the Grobman—Hartman
theorem for differential equations in Banach spaces with a degenerate operator
at the derivative (see also Chapter 6). This result may be considered as an
introduction to center manifold methods for such equations.

Necessary and sufficient conditions for simultanious reduction with respect
to both the unknowns and the equations (truncation reduction) are obtained.
They serve as the basis for the possibility of applying the iteration procedure
in obtaining families of multi-parameter solutions (see sections 1 and 3). Ap-
plication to some problems of mathematical physics are given as illustrative
examples. Section 3 discusses constructing general form of BEq assuming
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group symmetry. The case of potential BEqs is considered separately (see also
Chapters 2 and 4).

The comparison of various approaches shows that more efficient for solving
this problem are S. Lie-L.V. Ovsyannikov invariant manifolds methods — so
called group analysis methods. They are applied in section 4, 5, 6 and 7 of Chap-
ter 5 to some problems of mathematical physics bound up with the Helmholz
equation with a nonlinear perturbation, the theory of capillary—gravity surface
waves in hydrodynamics and problems of phase transitions in the statistical
theory of crystals. These problems can be interconnected and considered as
problems of symmetry violation considered in the branching theory enlighten
in sections 3 and 4 from the general viewpoint. Section 8 includes applications
of methods of group analysis in construction and investigation of Lyapunov—
Schmidt BEgs in the case of the Andronov—Hopf bifurcation (cycle birth bifur-
cation). Section 9, the final one, discusses the questions of stability of branching
solutions.

Chapter 6 describes applications of Lyapunov—Schmidt’s ideas in the theory
of differential operator equations (DOE)

B(t)i = F(t,u) (2)

with the irreversible operator B(0) in the main part (with a singularity — briefly,
singular I-DOE). A number of ‘initial value and boundary value’ problems,
which model real dynamic processes of filtering, thermal convection, defor-
mation of mechanical systems, electrical engineering (models of Barrenblatt—
Zheltova, Kochina, Oskolkov, Hoff, V. Dolexal and others), can be reduced to
such equations.

Singular differential operator equations have been investigated in the works
of S.G. Krein, N.A. Sidorov, B.V. Loginov, G.A. Sviridyuk, I.V. Melnikhova,
A.L Kozhanov, R.E. Schowalter, M.V. Falaleev and others. Extended bibli-
ographies can be found in monographs by N.A. Sidorov [20], R.W. Cassol and
R.E. Schowalter [1], and in the survey by G.A. Sviridyuk [1].

The problem of applying Lyapunov-Schmidt’s ideas to singular differential
operator equations having Fredholm operators in the main part had been stated
already by L.A. Lusternik in the course of work of his symposia held at Moscow
State University in the mid 1950s. It appeared obvious that the analog of the
classical branching equation for such equations (see chapters 2 and 3) is a
system of differential equations of an infinite order (see Sidorov [1]). In view
of substantial difficulties which arise in the investigation of this system, the
theory of singular differential operator equations is presently far from being
completed, moreover, there are few results for the nonlinear case.

In Chapter 6, in explication of foundations of the theory of singular differen-
tial operator equations, the authors have employed the apparatus of generalized
Jordan chains (developed in Chapter 1) and the fundamental operators of sin-
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gular integro-differential expressions (constructed by M.V. Falaleev [1]), the
theory of generalized functions, the Nekrasov-Nazarov’s method of undeter-
mined coefficients, which is combined with asymptotic methods of the theory
of differential equations with singular points, topological methods, methods
of semigroups and groups with kernels developed by G.A. Sviridyuk. Such
a mixture of diverse methods has given the possibility of investigating a wide
class of singular differential operator equations and partial differential operator
equations with the Noether operator in the main part. In the linear case a num-
ber of classes of singular differential operator equations has been completely
investigated.

Chapter 7 considers applied problems of mathematical physics. Here a sys-
tem of Vlasov—Maxwell integro-differential equations, which describes the be-
haviour of multi-component plasma, is investigated. This system has a great
importance for applications, and so it is intensively investigated by several
schools of applied mathematics and theoretical physics (J. Batt and G. Rein,
R. Glassey, J. Schaeffer and Y. Guo, P. Degond, etc.).

This chapter investigates the solutions for the system of Vlasov—-Maxwell
equations which correspond to the distribution functions introduced and em-
ployed in many works of Russian mathematicians (see the survey by G.A. Ru-
dykh, N.A. Sidorov, A.V. Sinitsyn, Yu.A. Markov [1], and the paper by
V.V. Vedenyapin [2], etc.) and in some works of mathematicians from western
countries (J. Batt and Fabian [1], Braach [1], Glassey, Guo and Ragazzo [1]).
Techniques of reduction to systems of elliptic equations and problems of exis-
tence and stability of solutions are considered. Classes of exact solutions are
constructed and described for the case of concrete distribution functions. On
the basis of results of Chapter 2, existence theorems for bifurcation points of so-
lutions of the Vlasov—Maxwell system have been proved, and the asymptotics
of the solutions have been computed. It is known that the Vlasov—Maxwell
systems (classical and relativistic) make it possible to construct and investigate
various models of magnetic insulation (for example, problems of magnetic in-
sulation were investigated by Abdallah, Degond and Mehats [1]). The Degond
model [1] has been proved to be efficient. In the appendix written by A. Sinit-
syn [1] a brief derivation of that model is considered, existence theorems on
solutions of the corresponding two-point boundary value problem are given and
its dependence on physical parameters is described.

The chapters are devided into sections and subsections where appropriate.
Mathematical relations are numbered autonomous in each section. In double
numbering a first digit corresponds to the section number (or a subsection
number in the chapter 4). The second digit numbers formulas inside a section
(a subsection in the chapter 4).

The preface was written by B.V. Loginov and N.A. Sidorov, Chapters 1-4
by N.A. Sidorov, Chapter 5 by B.V. Loginov, Chapter 6 by M.V. Falaleev and
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N.A. Sidorov, Chapter 7 by A.V. Sinitsyn and N.A. Sidorov, the Appendix by
A.V. Sinitsyn.

Translation from Russian into English was made by A.V. Sinitsyn (Chap-
ters 1-4, 7 and Appendix), B.V. Loginov (Chapter 5) and M.Yu. Chernyshov
(Preface and Chapter 6).

We hope that this monograph will be helpful for specialists in both classical
and applied mathematics, mechanics, theoretical physics, as well as for graduate
and postgraduate students specializing in the areas indicated above. Any critical
and improving, or complementing remarks will be accepted by the authors with
gratitude.
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