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Preface to the Second Edition

It is gratifying to note that most chapters in this book have received
endorsement by a considerable number of students and teachers of various
universities in India. I am grateful to all who have written to me, some
drawing attention to minor errors and others suggesting addition of a
few more chapters on certain special topics. Most of them strongly
recommended including a chapter on “Symmetry”. This new edition
has, therefore, a chapter on the principles of symmetry and their appli-
catians in chemistry. Besides, a few additions, such as the simple Huckel
treatment of the cyclic conjugated systems and aromaticity have been
incorporated in Chapter 8. For the new chapter a set of problems are
given and worked out in detail in the ‘““Answers to the Problems” section.
These problems are so chosen as to supplement the knowledge already
acquired by the reader from the text.

I would like to thank my colleagues Dr D N Sathyanarayana and
Prof. K. Venkatesan for their careful reading of the new chapter (Chapter
9) and making several critical suggestions. Finally, I would like to record
my appreciation of the assistance of Mr S Srirama who typed the manu-
script and Mr Venugopal for preparing the diagrams.

A. K. CHANDRA



Preface to the First Edition

When I started writing this manuscript, I did not have the honest
intention of ever completing this for a university level textbook on
quantum chemistry. Thanks are due to the University Grants Com-
mission (Goverment of India) not only for providing me with
enough funds for the preparation of the manuscript but also for their
asking me to submit progress reports.every six months. I found a great
difficulty in writing a progress report for them without making any real
progress in this work.

The basic material of this book is based on my lectures to the post-
graduate students in the Department of Purc Chemistry, Calcutta Univer-
sity, for several years, in the Department of Chemistry, Indian Institute of
Technology, Bombay, for a year or so, and at present in the Department of
Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore.
This book is thereforc primarily intended for students of chemistry
at the M.Sc. level in India, and possibly at the senior undergraduate
levels in the British and American universitics. Teachers  and
research workers who are not actively engaged in this particular field of
chemistry but wish to keep up with the recent trends in chemical
education will find this book very useful. This book contains chapters
that are basic to an understanding of the important concepts that
quantum mechanics has introduced in chemistry. Since an adequate
and critical comprehension can.only be achieved if they are presented
in mathematical language, considerable eftorts have been made to
make the mathematics simple and comprehensive. However, I have
assumed that a typical reader has been exposed at sometime to an intro-
ductory course in physics, calculus, vectors and determinant.

This book covers the most Tecent advances in this field in various
chapters, especially in the last two chapters which explain the
Woodward-Hoffmann rule and describe the chemical applications of
the Hellmann-Feynman theory. These are important and significant
topics, and at the same time simple enough for:a typical reader to follow.

Every chapter, except the last one, is followed by a set of problems
most of which are worked out in detail in the ‘Answers to the Problems’
. section. These problems are chosen so as to supplement the knowledge
already acquired by the reader from the text.

My sincere thanks are due to Dr. N. G. Mukherjee, Calcutta Univer-
sity, and Dr. B. M. Deb, Indian Institute of Technology, Bombay.
Dr. Mukherjee read the entire manuscipt in depth, made many sugges-
tions for improvement and suggested many problems for several chapters
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of this book, while Dr. Deb was the main author of the chapter on the
Hellmann-Feynman theorem and some of its chemical applications. I
would like to thank Dr. C. D. Flint, Birkbeck College, London University,
for his careful reading of the chapters 5, 6 and 7 and making several
critical suggestions when he was here as a visiting scientist. Thanks are
due to Professor P. T. Narasimhan, Indian Institute of Technology,
Kanpur, for his critical reading of the Chapters 3 and 4 and pointing out
many obscurities in the previous version of these two chapters. Although
various scholars, including my own students (Dr. D. C. Mukherjee of
Calcutta University, and Mr. R. Sundar and Mr. B. S. Sudhindra,
both of the Indian Institute of Science, Bangalore) have gone through
some portions of this book, it is too much to hope that this book is free
from any errors and obscurities. But the responsibility for these is
entirely mine, and I shall be grateful to be told of the places where I
could do better.

I could not end this Preface without an acknowledgement to the
several lectdre courses which I followed during my stay at Oxford,
especially those of late Prof. C. A. Coulson, F.R.S., whose ideas and
derivations may be found in several pages of this book. However, I feel,
my greatest deby goes to my teacher, Prof. Sadhan Basu, Palit Professor
of Chemistry, Calcutta University, whose lectures on various topics of
quantum chemistry on various occasions at the University College of
Science, Calcutta, when I was one of his pupils, created in me an
immense interest in this field. Prof. A. B. Biswas, Indian Institute of
Technology, Bombay, had the great kindness to advise me with many
helpful suggestions concerning the plan and emphasis of this book. I
would also like to thank Prof. Satish Dhawan, Director, and Prof. A. R.
Vasudeva Murthy, Chairman of the Division of Chemical and Biological
Sciences, Indian Institute of Science, for their positive encouragement
and general help in this endeavour,

Finally, I would like to record my appreciation of the assistance of
Mr. C. R. Srecenivasa Murthy who carefully typed and retyped the
entire manuscript, and of my wife, Bani, for reading the proofs.

) A. K. CHANDRA
Department of Inorganic & Physical Chemistry
Indian Institute of Science
Bangalore



Energy Conversion Table

a.u. eV cm™? Kcal/mole erg
1 au. 1 27:2 2-1947 x 108 6:277x 104 4-358x 10-12
1 eV 0-0367 1 8-066 x 10® 23-07 1-602 x 10—12
1 cm™? 4-556x 10~¢  1-2398x 10~¢ 1 2-86 x 10— 1-9862 % 10-1¢
1 Kcal/mole 1-593x 10-2  0-0433 3-4964 x 102 1 6-9446 x 10—14
1 erg molecule™ 2:294x 10  6-24 x 102 5035 108 1-44 x 103 1
Fundamental Constants

Charge on electron ¢ =48 x 1071 esu
Velocity of light ¢ = 2-998 x 10 cm/sec
Planck’s constant h = 6624 x 107%7 erg sec.
Mass of electron me = 9-107 x 1078 gm
Mass of proton mp = 1673 x 1072¢ gm
Boltzmann constant k =14 x 10718 erg degree™*
Rydberg constant R = 109737 cm™! (for infinite nuclear mass)
Bohr radius a, = 0-529 x 107® cm
Bohr magneton B = 0-927 x 10720 erg gauss™

Conversion Table in SI Units
Physical quantity Old unit Value in SI units

_ — —_— -
Distance Centimetre Metre, m
1 cm = 1072 metre

Energy Calorie (thermo-chemical) 4.184 J (joule)

Electron volt— eV 1.602 x 10~19]

Erg 1077

Wave number, cm™! 1.986 x 10~23%]
Force Dyne 107°N (Newton)
Pressure Atmosphere 1.013 x 10® Pa (Pascal)

torr = mm Hg 133.3 Pa
Frequency Cycle per second | Hz (hertz)
Relative permittivity Dielectric constant 1
Temperature °C and °K IK (kelvin)

0°C = 273.2K

Mass Gram 10~® kg (kilogram)
Charge of an electron 4.8 x 10~ %su 1.6021 x 10-°C
Dipole moment Debye-D 3.334 x 10~*°C.m.
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Introduction:
Waves and Juanta

1.1. Wave and Particle Nature of Radiation

Radiation is known to be composed of electromagnetic waves with
electric and magnetic fields perpendicular to each other and perpendicu-
lar to the direction of propagation. By definition, wavelength 2 is the
distance between the successive crests and the phase velocity w is the
velocity at which a given crest moves (Fig. 1.1).

F1a. 1.1. Electromagnetic wave at time t and t + O,

There are quite a number of optical phenomena, notably the diffraction
and the interference of radiation, which provide the strong evidence in
favour of the wave nature of radiations.

There are, however, two other phenomena which provide equally
strong evidence in favour of the particle nature of radiation. They are
the photoelectric effect and the Compton scattering. In the photoelectric
effect electrons are emitted from a metal surface illuminated by the
ultraviolet radiation. If the kinetic energy (KE) of the emitted electrons
is plotted against the frequency v (= ¢/A, where ¢ is the velocity of light)
of the incident radiation, a graph of the type shown in Fig. 1.2 is obtained.
It has been observed that increasing the intensity of the incident radia-
tion at constant frequency does not affect the KE of the emitted electrons
but increases the number of electrons emitted in unit time. The equation
of the straight line shown in Fig. 1.2 is

KE = & (v—v,) (L)
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K.E

K.E=h(¥-Y)

Vo
Yy ————

F1c. 1.2. Kinetic cnergy of photoelectrons.

where v, is the minimum frequency below which no electron is emitted
and £ is called the Planck constant. This photoelectric phenomenon was
explained by Einstein using Planck’s quantum hypothesis that the energy
of radiation is not distributed through waves, as the classical concept
leads to, but is concentrated into corpuscles or photons of energy - Av.
It is further assumed that the emission of an electron from the metal
surface takes place only when the electron receives a certain minimum
energy, say /vy, equivalent to the energy with which the electron is
bound to the surface. Therefore, the KE of the emitted electrons is
h(v—y,).
Since the energy E of a photon, according to Planck, is given by
E=hv (1.2)
and the mass, m of the photon can be calculated using Einstein’s rela-
tivistic equation

E = mc? (1.3)
where ¢ is the velocity of light, the momentum p of a photon is given by
p=mc (1.4)

This momentum equation was tested by Compton in an experiment
where photons were observed to be scattered at all angles by electrons
of the scattering material. So, the electromagnetic radiation has both the
particle and wave aspects. If the radiation can be treated as waves as
well as particles then how do the real particles behave? One should
expect that the behaviour of real particles must be capable of description
in terms of waves. In 1924, de Broglie combined the ideas of Planck
(Eq. 1.2) and Einstein (Eq. 1.3) into a relationship between mass and
frequency.
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me? = hv (1.5)

Hence, the relationship between velocity v, and momentum p, becomes
hv  h

— = —— = — 1'6

pmm= =0 (16)

Thus, it was possible to associate waves with every moving particle in
nature. This relation should hold also for heavier particles which we
are able to see. But, on account »f heavier mass, A becomes so small that
there is a great difficulty in discovering the wave phenomenon associated
with heavier particles. This concept of the wave-particle duality of matter
was subjected to experimental test by Davisson and Germer in 1927
and independently by Thompson in 1928 who showed that a beam of
electrons did indeed behave as if it were waves and underwent diffraction
from a suitable grating.

1.2. Wave Equation

If electrons have the wave properties then there must be a wave equation
and a wave function to describe the electron waves just as the waves of
light, sound and strings are described. Let us consider the motion of a
string which is held fixed at two ends x = 0 and x = a. It is possible
to excite with care certain kinds of vibrations in which all points of the’
string move so that their displacements vary with time in the same way
and all points are at their maximum displacements at the same time and
have their maximum velocity at the same time. If the displacement occurs
in the y-direction, mathematically these motions can be described by
functions of the form
yx ) =f(x) @) (1.7)
where f (x) is independent of ¢ and $(¢) is independent of x. Such motions
are called normal modes of vibration. The wave equation has the general
form
d» 1d%
dx? cde
where ¢ is called the wave velocity. Substituting for » from Eq. (1.7) in
Eq. (1.8) one obtains
2 2 2
ey L e, _
Sf(x) dx? $(t) dt?
In Eq. (1.9) the variables are separated and they may be equated to the
same constant, say — w?® This gives us two ordinary differential equations

dzj;i’) + o%(t) =0 (1.10)

¥ (x) | oY (%)
o g =l {1.11)

(1.8)
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(For solutions of the second order differential equations of this form,
see Appendix 1).
Eq. (1.10) has the solution

¢ (t) = Asinwt 4 B coswt (1.12)
where the two constants 4 and B are determined from the boundary

conditions, and  is called the circular frequency which is related to the
ordinary frequency v as

o = 27y (1.13)
Eq. (1.11) may therefore be written as

dzﬂf) +4’Z#f(x) —0 (1.14)

Setting A = i, the general solution of Eq. (1.14) may be written as
v

£ (@) =A1exp(+ IQ:x)—i—Azexp('— '2:") (1.15)
or as (see Appendix 1)
f(x) =Csin27ﬂx+D005?§x (1.16)

where 4,, 4,, C, and D are constants. Let us consider Eq. (1.16) and
imposg, the boundary conditions

(i) f(x) =0 at x =0; and
(i) f(x) =0atx=a

where a is the length of the string. From the boundary condition (i),
D = 0 and from the condition (ii),

CsinQ—ﬂa=O
A
or sin— =0

or —=nn=1,23........ (1.17)
where n is a positive integer,” Thus
A
=n= 1.18
a=ny (1.18)
The normal modes are thus the stationary sine waves given by
() =csin”a_"x (1.19)

and the wavelengths A are such that the length of the string is an integral
number of half waves. The complete solution for a normal mode in a
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stretched string therefore follows from Egs. (1.17), (1.12), (1.13) and
(1.19), and is given by

. nT s
9 (%, t) = Csin — % (4 sin 2mvt + B cos 2mvt) -/ (1.20)

Eq. (1.20) is an expression for the amplitude of waves generated during
the normal modes of vibration in a stretched string. The same equation
should represent the amplitude of a de Broglie wave associated with a
moving particle. We are, primarily concerned here, with the time-
independent or stationary waves. Therefore, the equation for a standing
sine ‘wave of wavelength A is given by

¢ =Csin2;\—7tx (1.21)

where ¢, called the wave function, is the amplitude of the wave varying
sinusoidally along x and C is the maximum amplitude. Double differen-
tiation of Eq. (1.21) with respect to x gives
d? 472 2w 4n?
dj::—-)\—sz Tx:—)\—zqa (1.22)
The kinetic energy 7 of a moving pa.rticle of mass m and velocity v
is given by

1 m2y?
= — 2 —
T = 5 M o (1.23)
Following the de Broglie relation [Eq. (1.6)], 7 becomes
h2
=S¥ (1.24)
By using Eq. (1.22) to eliminate A2 from Eq. (1.24) we get
: T — R 1 a-zq, (1.25)
~ 8nm Q) dx? e
If the particle moves in a field whose potential energy is V, then
R o1 d’v{J
T = ’
E—V= ~ i ‘P T (1.26)

where E is the total energy. This is Schrodinger’s equation for a particle
in one dimension. It is usually written as

& 87: m !
dxq: (E—V) = (1.27)
In three dimensions this cquatlon becomes:
2 2 2 2
i I AP AR T E-V) = (1.28)

dx2 ’,'1)? dz?

1.3. The Interpretation of ¢

In classical mechanics the squarc of wave amplitude associated with
electromagnetic radiation is interpreted as a measure of the radiation

- ~N
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intensity. This suggests that we should make a similar association for
de Broglie waves associated with electrons or any particle. Let the solition -
of wave equation (1.28) be a function ¢ (x, y, 2), called wave function.
We may anticipate that some physically observable property of the
electron is connected to ¢2 (x,7,2) or more generally ¢* (x,y, z)
d(x,9,2) ifPisa complex wave function.! For a system having electrons
there are two ways in which ¢? or ¢*¢ can be interpreted. Either
|$2| may be regarded as a measure of the density of electrons or |Q)2| dt
be interpreted as a measure of probability of finding the electron in a
small volume 4T in a certain ‘region of space.

The latter view is consistent with the Heisenberg uncertainty principle
based on results of some experiments. This principle states that the
position and momentum of a small particle like electron cannot simul-
taneously be measured exactly; for in measuring the position of an electron
we have to disturb it and so change its momentum. A complete analysis
shows that if Ax and Ap, are the uncertainties in position and momentum
then Ax.Ap, ~ h: Under such circumstances the best thing one can do
is to predict the probability that an electron is found in a given region of
space. For this reason || may be called the probability function.
Since electron must be somewhere in space, the 1ntcgra.t10n of lq,) |
over all space must be unity, so that

fd2ldt=1 ' (1.29)
Such wave functions are said to be normalised. For every system which
is bound, every wave function must satisfy Eq. (1.29).

‘1.4." Properties of ¢

A second-order differential equation like (1.28) may give rise to several

solutions though not necessarily all of them correspond to any physical

or chemical reality. Such wave functions are therefore considered un-

acceptable. Acceptable wave functions are those which satisfy the

following conditions:

1. q) is single valued, i.e. for each value of the variables x, », z, there
is only one value of the function ¢. If one of the variables is an
angle, say 0, then it requires that

. P(©) = ¢ (6 + 2nm)
where 7 is an integer.
2. ¢ and its first derivative with respect to its va.rlables are continuous.
" In other words, there must not exist any sudden changes in ¢ as
its variables are changed.
3. For bound states ¢ must vanish at infinity. If ¢ be a complex func-
tlon then ¢*{ must vanish at mﬁmty

L If§ = a'+ ib where i = V1, then $* = a— ib, 5o that {*&=a? -+ b?, a real function.
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If the above three conditions are satisfied the function ¢ is called a
well-behaved function,

APPENDIX 1

In this appendix we will show how a simple differential equaticn of the
second order of the following form

d"’y .
can be solved. In Eq. (Al.l) Ic2 is constant. Such an equation is satisfied
by a function of an exponential form. Let us assume the solution of Eq.

(Al.1) as

y = exp (mx) - (Al2)
Then substituting for y, exp (mx) in Eq. (Al.1), we obtain the auxiliary
equation

m2 + k2=20 (A1.3)
The roots of Eq. (Al.3) are given by - ‘
' m= -+ ik (Al.4)

where i = V/— 1. The particular solutions of Eq. (Al.l) are exp (- ikx)
and exp (— ikx). On adding these particular solutions there results a
solution with two independent arbitrary constants and therefore -the
complete solution of Eq. (Al.l) is written as
y = A, exp (tkx) + A, exp (— tkx) (Al.5)
On expanding the exponentials in sines and cosines we obtain the
following equivalent form
» = A, (coskx + isinkx) + A, (coskx — isin_kx)

= (4, + A,) coskx + (4, — A4,) ¢ sinkx

= C coskx + D sinkx (A1.6)
In Egs. (Al.5) and (Al.6), 4,, 4;, C, and D are arbitrary constants.

- PROBLEMS

1. An clectron moves in an electric field with kinetic energy of 2.5 eV. What is its associated
de Broglie wavelength?
Find the energy jump in electron volts for the emission of visible light of wavelength 75001&.
3. Show that as x increases by A in the wave .

b= e ()
the amplitude, ¢ goes through one cycle.

N



2
Operator Concept In
Quantum Chemistry

2.1. Operators

We have learnt in the previous chapter that wave function describes the
state of a systém so that any observable quantity can be derived from it.
The mathematical process for carrying out the derivation involves the
concept of operators. To every physically measurable or observable quantity
like position, velocity, linear momentum, angular momentum, energy, etc. of a
system there corresponds an operator in quantum mechanics. This may be treated
as onc of the scveral basic postulates of quantum mechanics.

An opcrator is a symbol for a certain mathematical procedure which
transforms onc [unction into another. For example, the operator of
evaluating the derivative with respect to x is represented by the symbol
d/dx. When this opcrator is applicd to the function x® we obtain a new

function as
d

_E (xn) —. pxn!

A list of typical examples of different mathematical opcrations along
with the results of the operations on the function, #3 is given in Table 1.

TasLE 1 ;
A —O[matio; - Operator Result of operation on x®
Taking the square ( )? 8
Taking the square root . IV 82
Multiplication by a constant k k B -
Differentiation with respect to x % 352
Integration with respect to x I( ) dx x4+ ¢

Evidently, an operator is a set of instructions embodied in the definition
of the operator and the operations can always be written in the form of
an equation



