C ONTEMPORARY

MATHEMATICS

Groups, Languages,
Algorithms

AMS-ASL Joint Special Session on
Interactions between Logic, Group Theory,
and Computer Science
January 16-19, 2003
Baltimore, Maryland

Alexandre V. Borovik
Editor

American Mathematical Society

C ONTEMPORARY
IMATHEMATICS

378

Groups, Languages,
Algorithms

AMS-ASL Joint Special Session on
Interactions between Logic, Group Theory,
and Computer Science
January 16-19, 2003
Baltimore, Maryland

Alexandre V. Borovik
Editor

American Mathematical Society
Providence, Rhode Island

Editorial Board
Dennis DeTurck, managing editor

George Andrews Carlos Berenstein Andreas Blass Abel Klein

This volume is based on the AMS-ASL Joint Special Session on “Interactions between
Logic, Group Theory, and Computer Science,” held in Baltimore, Maryland, January
16-19, 2003.

2000 Mathematics Subject Classification. Primary 20B40, 20E05, 20F28, 81P68;
Secondary 68Q05, 68Q17, 68Q42, 68Q45, 68T05.

Library of Congress Cataloging-in-Publication Data

AMS-ASL Joint Special Session on Interactions between Logic, Group Theory, and Computer
Science (2003 : Baltimore, MD)

Groups, Languages, Algorithms : AMS-ASL Joint Special Session on Interactions between
Logic, Group Theory, and Computer Science, January 16-19, 2003, Baltimore, Maryland /Alexan-
dre V. Borovik, editor.

p. cm. — (Contemporary mathematics, ISSN 0271-4132 ; 378)

Includes bibliographical references.

ISBN 0-8218-3618-8 (alk. paper)

1. Group theory—Congresses. 2. Finite groups—Congresses. 3. Infinite groups—Congresses.
I. Borovik, Alexandre. II. Title. III. Contemporary mathematics (American Mathematical So-
ciety) ; v. 378.

QA174.A64 2003
512/.2—dc22 2005043610

Copying and reprinting. Material in this book may be reproduced by any means for edu-
cational and scientific purposes without fee or permission with the exception of reproduction by
services that collect fees for delivery of documents and provided that the customary acknowledg-
ment of the source is given. This consent does not extend to other kinds of copying for general
distribution, for advertising or promotional purposes, or for resale. Requests for permission for
commercial use of material should be addressed to the Acquisitions Department, American Math-
ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can
also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
each article.)

(© 2005 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years
after publication. Contact the AMS for copyright status of individual articles.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10987654321 10 09 08 07 06 05

Groups, Languages,
Algorithms

Preface

This volume is loosely based around the major themes of the AMS/ASL Joint
Special Session on “Interactions Between Logic, Group Theory and Computer Sci-
ence” held in Baltimore, Maryland, in January 2003. I wish to express my thanks
to the American Mathematical Society and Association for Symbolic Logic for their
invitation to organize the session and for their support, which allowed this unusual
interdisciplinary meeting to take place.

Since the pioneering works of Novikov and Maltsev, group theory was a test-
ing ground for mathematical logic in its many manifestations, from the theory of
algorithms to model theory. This interaction between logic and group theory led to
many prominent results which enriched both disciplines. In this volume, we collect
under one cover several papers devoted to the development of technique for the
group theory/logic interface. They complement the previous volume, “Computa-
tional and Experimental Group Theory” (vol. 349 of Contemporary Mathematics),
which also arose from the Baltimore Meeting but concentrated more on a similar
interaction between group theory and computer science.

The first paper in the volume, by Robert Gilman, is a detailed survey of the
state of art in the theory of formal languages as applied to groups. Formal languages
originated as models of spoken and written languages. Subsequently they proved
useful in analyzing programming languages, and more recently connections with
group theory have begun to emerge. The survey concentrates on the simplest
classes of languages, namely regular, context free and indexed languages; some
other classes are mentioned briefly. No knowledge of formal languages is assumed
on the part of the reader. The exposition emphasizes the algebraic aspects of the
subject at the expense of those related to programming; in particular, the language
classes are defined in terms of monoids, one for each class.

The next paper, by Myasnikov, Remeslennikov and Serbin, dramatically ex-
pands the language metaphor: here, the elements of Lyndon’s free Z[t]-group F Z[t]
are represented by infinite words with a regular free Lyndon length function on
FZIYl with values in Z[t]. This approach allows one to solve various algorithmic
problems for FZ using the standard Nielsen cancellation argument for the length
function L : FZ[t — Z[t]. The concept can be generalized to A-free groups for
arbitrary discrete ordered abelian group A, by considering “words”, indexed by
elements of A rather than integers, and defining a suitable notion of reduced word.
As the next paper, by Ian Chiswell, shows, the concept of an A-free group has a
nice geometric interpretation: A-free groups are exactly tree free groups, that is,
groups which act by isometries on some A-tree freely and without inversions.

Two major papers by Kharlampovich and Myasnikov develop the machinery
for the study of the elementary theory of a free group. It appears that the methods

vii

viii PREFACE

are going far beyond the free groups. They provide structural and algorithmic
results for a wide class of “free-like” groups, in particular, for finitely generated
fully residually free groups. The theory is highly complex and it will take time to
fully assess all its aspects and implications.

The authors divide their approach to elementary theories of groups and related
problems into three stages. The first stage concerns equations over a given group G
which is free or close to being free. In the classical terms the main problem here is to
describe (effectively) the structure of solution sets of arbitrary systems of equations
in finitely many variables over G. Different such descriptions are contained in the
first paper. This requires the development of a fair amount of algebraic geometry
over the group G and related groups (introduce algebraic sets and Zariski topology,
coordinate groups and radicals, study Noetherian properties and irreducible com-
ponents, to prove Nullstellensatz, etc.). On the group-theoretic level one needs to
describe the algebraic structure of the coordinate groups of the irreducible varieties
over G (which also appear as fully residually G groups, or limit groups (Sela), or
models of the universal theory of G (Remeslennikov)). One of the ways to obtain
this description is to describe effectively some canonical decomposition of such a
group, so-called JSJ decomposition (introduced by Rips and Sela for finitely pre-
sented groups); this is the aim of the first paper. Algorithmically, everything is
based on the so-called elimination process, described in the first paper; it resembles
the classical elimination procedure in algebraic geometry. This process effectively
relates all different techniques to each other. In the case of free groups it appears in
the various forms of the Makanin-Razborov machine. In the second stage one has
to introduce the main technical tool which allows one to eliminate a quantifier in
a particular situation which can be described by an implicit function theorem or,
in an algebro-geometric form, as lifting solutions of equations into generic points
of varieties, or, in model-theoretic terms, as introducing basic Skolem’s functions.
Effective versions of these theorems are the target of the second paper. Implicit
function theorems give the main tool to organize the verification process which
checks whether a given formula in the group language holds in G or not. The
termination mechanism, which ensures that the verification process terminates in
finitely many steps, is the third stage—but these results are not included in the
present volume.

The last paper of the present volume, by Esyp, Kazatchkov and Remeslennikov,
studies the so-called free partially commutative groups. They arise naturally in
many branches of mathematics and computer science, which led to a variety of
names under which they are known in the literature: semifree groups, graph groups,
right-angled Artin groups. The paper is concerned with the divisibility theory and
the complexity of the word and the conjugacy problem in the partially commutative
groups.

Alexandre Borovik
December 2004

Contents

Preface

Formal languages and their application to combinatorial group theory
ROBERT H. GILMAN

Regular free length functions on Lyndon’s free Z[t]-group F(!
ALEXEI G. MYASNIKOV, VLADIMIR N. REMESLENNIKOV, and
DENiIS E. SERBIN

A-free groups and tree-free groups
I. M. CHISWELL

Effective JSJ decompositions
OLGA KHARLAMPOVICH and ALEXEI G. MYASNIKOV

Algebraic geometry over free groups: Lifting solutions into generic points

OLGA KHARLAMPOVICH and ALEXEI G. MYASNIKOV

Divisibility theory and complexity of algorithms for free partially commutative

groups
EvGenit S. Esyp, ILIA V. KAZATCHKOV, and VLADIMIR N.
REMESLENNIKOV

vii

37

79

87

213

319

Contemporary Mathematics
Volume 378, 2005

Formal Languages and their Application to Combinatorial
Group Theory

Robert H. Gilman

ABSTRACT. This article is an introduction to formal languages and their con-
nections with combinatorial group theory.

CONTENTS
1. Introduction 1
2. Notation and definitions 2
3. Regular languages 2
4. Rational sets 8
5. Context free languages 11
6. Indexed languages 21
7. Other language classes 33
References 34

1. Introduction

Formal languages originated as models of spoken and written languages. Sub-
sequently they proved useful in analyzing programming languages, and more re-
cently connections with group theory have begun to emerge. These connections
are the subject of this survey. We concentrate on the simplest classes of languages,
namely regular, context free and indexed languages; some other classes are men-
tioned briefly at the end. We do not assume any knowledge of formal languages on
the part of the reader.

Our exposition is somewhat novel in that the language classes are defined in
terms of monoids, one for each class. This approach emphasizes the algebraic
aspects of the subject at the expense of those related to programming. It is one of
a number of treatments based on the observation that popping a letter off a stack

2000 Mathematics Subject Classification. Primary 20F32; Secondary 20F05 68Q42 68Q45.

Key words and phrases. Group, formal language.

The author expresses his thanks to Imperial College, for its hospitality while this survey was
being written. He also thanks the referee for a careful reading and for suggestions which improved
the quality of the paper.

®© 2005 American Mathematical Society

2 ROBERT H. GILMAN

is a right inverse to pushing it onto the stack; see [8, Chapter 4], [17, Volume A,
Chapter X], [18], [25] and [44].

For other accounts of formal language theory the reader is referred to [43, 29,
34]. [41] and [12] are also worth consulting. The survey [1] includes the three
language classes discussed here.

Much of the material here comes from lectures given at the City University of
New York and the University of Neuchétel, and from a previous survey [23]. Some
of the proofs in the previous survey have been improved, indexed languages are
treated more fully here than there, and references have been revised. A number
of exercises are included; the words “Prove that” are usually omitted from the
statements of these exercises.

2. Notation and definitions

Formal language theory’s origin in linguistics is reflected in its terminology. An
alphabet is a finite nonempty set, and a language over an alphabet X is a subset of
3*, the free monoid over ¥. Elements of X* are called words over ¥. The length
of a word w € ¥* is |w|. The unit element of ¥* is €, the empty word. The empty
set is ¢; L = B U {e}.

Connections between languages and groups are usually by means of a choice
of generators. For any monoid M a choice of generators is a surjective monoid
homomorphism ¢ : ©¥* — M. Sometimes we refer to a choice of generators ¥* — M
without naming the monoid homomorphism. In that case the image of a word w is
denoted w.

When o : ¥* — G is a choice of generators for a group G, it is tacitly
assumed that ¥ is equipped with formal inverses and that o respects these in-
verses. In other words there is a permutation a — a~! of ¥ with all cycles of
length two, and o(a™!) = (o(a))™!. It is easy to see that in this case the condi-
tion (wv)~! = v lw™! determines a unique extension of inverses to £* and that
o(w™!) = (o(w))~? for all w € T*.

When ¥ is equipped with formal inverses, free equivalence and free reduction
are defined for ¥* in the usual way.

The word problem of a group G with respect to a choice of generators ¥* — G
is the language of all words mapping to 1. A combing for G is a language L C ¥*
mapping onto G. A combing with uniqueness is a combing which maps bijectively

to G.

3. Regular languages

The regular languages over an alphabet ¥ are the closure of the finite subsets
of ¥* under under union, product, and generation of submonoid. This definition
makes sense for all monoids, not just free ones; but it seems clearer to postpone
the general case.

Union, product, and generation of submonoid are called the rational operations
and are denoted by S + T, ST and S* respectively. It is immediate from their
definition that regular languages are closed under rational operations. It is almost
as immediate that with the exception of ¢ and {e} regular languages over ¥ are
either singleton subsets of ¥ or are constructed from singleton subsets by rational
operations. Thus if we use letters of ¥ to denote the corresponding singleton subsets
and e to denote {¢}, each regular language is named by a so-called regular expression

FORMAL LANGUAGES AND COMBINATORIAL GROUP THEORY 3

composed of letters from X, symbols ¢ and €, and and the operators +,*, and
concatenation.

ExXAMPLE 3.1. The regular language over ¥ = {a,b} consisting of all words
which begin with a and end with b is named by the regular expression a(a + b)*b
and also by the regular expression ab+ a(a + b)(a + b)*b.

In general there are many regular expressions naming a given regular language.
Nevertheless we identify regular expressions with the languages they name. Thus
we allow ourselves to speak of regular languages a(a + b)*b and T + €.

EXERCISE 3.2. Find a regular expression for the language of freely reduced
words over ¥ = {a,a™1}.

EXERCISE 3.3. Give a precise definition of regular expressions.

3.1. Properties of regular languages. The first property is that regular
languages are the languages accepted by finite automata.

A finite automaton A defined over an alphabet X is a finite directed graph with
one vertex distinguished as the initial vertex and some others as terminal vertices.
Each edge of the graph is labeled by an element from ¥. The empty word € may
also be an edge label, in which case the automaton is said to be defined over ..

A word in X* is accepted by A if it is the label of a successful path, that is,
a path from the initial vertex to a terminal vertex. The set of accepted words is
called the language accepted by the automaton.

The label of a path is of course the product of its edge labels in the order in
which the edges appear in the path. A path of length 0 has label €. It is possible
for an automaton to have no terminal vertices; such an automaton accepts the
language ¢.

Figure 1 shows a finite automaton A defined over {a,b}.. Initial and terminal
vertices are indicated by arrows with no source and no target respectively. The
initial vertex of A is its single terminal vertex. A accepts abab but not baab. The
reader will recognize A as a Cayley diagram for Sz, the nonabelian group of order
6, with edges for the inverses of the generators a and b omitted. Adding these edges
yields an automaton which accepts the word problem with respect to the present

FIGURE 1. A finite automaton A

4 ROBERT H. GILMAN

choice of generators for S3. It is clear from this example that the word problem
for any finite group with respect to any choice of generators is accepted by a finite
automaton constructed from the Cayley diagram determined by those generators.

EXERCISE 3.4. Construct automata accepting the languages €, ¢, and w where
w is a nonempty word in ¥*.

EXERCISE 3.5. Construct an automaton accepting the language of freely re-
duced words over ¥ = {a,b,a™!,b71}.

The following definition and lemma are preparation for Theorem 3.9, which
characterizes regular languages in a number of ways.

DEFINITION 3.6. A finite automaton is deterministic if it is defined over an
alphabet ¥ and if no vertex has two outedges with the same label.

Deterministic finite automata are sometimes defined differently than in Defini-
tion 3.6. From now on we say automaton instead of finite automaton.

EXERCISE 3.7. If a language is accepted by a deterministic automaton over %,
it is accepted by one such that each vertex has exactly one outedge with label a for
each a € X.

Hint: Add a vertex v’ for which all outedges are loops back to v'.

LEMMA 3.8. Every nonempty language accepted by an automaton is accepted
by an automaton satisfying the following conditions.

(1) The initial vertez has no inedges.

(2) There is one terminal vertez, and it has no outedges.

(3) Each edge and each vertex is on a successful path.

(4) Distinct edges with the same source and target vertices have distinct labels.

PrOOF. If the initial vertex po has inedges, add a new vertex p{, and edge
Do —5 po. Make pp the initial vertex. Add a new terminal vertex p;, and for each
previously existing terminal vertex p, add an edge p — p;. Make p; the unique
terminal vertex. These alterations do not change the accepted language. In addition
deleting edges and vertices not on successful paths and identifying multiple edges
from with the same source, target and label do not change the accepted language
either. Since the language is nonempy, the initial vertex and terminal vertex will
survive these deletions. O

THEOREM 3.9. Let L be a language over ¥. The following are equivalent.

(1) L is a regular language.

(2) L is the language accepted by a finite automaton over X..

(3) L is the language accepted by a deterministic finite automaton.

(4) L = f~YX) for some homomorphism f : ¥* — M from ©* to a finite
monoid M and some subset X C M.

ProOF. To prove (1) implies (2) we argue by induction on regular languages.
The languages €, ¢, and w # € are accepted by automata constructed in Exercise 3.4.
Every other regular language may be decomposed as L = Ly + Ly, L1 Ly or L}, and
by the induction hypothesis each language L; is accepted by an automaton A;. If
any L; = ¢ for some i, there is nothing to prove. Thus we may assume each A4;
satisfies the conditions of Lemma 3.8. If L = Ly + Lo, identify the initial vertices
of Ay and A3 to obtain an automaton accepting L. If L = L; Lo, identify the initial

FORMAL LANGUAGES AND COMBINATORIAL GROUP THEORY 5

vertex of A, with the terminal vertex of A; and change the terminal vertex of A;
into a nonterminal vertex. Finally if L = L3, identify the terminal vertex of A;
with its initial vertex.

Next we prove (2) implies (4). L be the language accepted by a finite automaton
A over X, and let M be the monoid of binary relations on the vertices of .A. The
monoid operation is composition of relations. For each w € ¥* define a binary
relation ~,, on the vertices of A by p ~,, ¢ if and only if there is a path from p to g
with label w. We claim ~, equals the composite ~,, o ~,. Indeed there is a path
from p to g with label wv if and only if for some vertex r there is a path from p
to r with label w and a path from r to ¢ with label v. Thus the map w —~,, is a
homomorphism from ¥* to the finite monoid M. L is the inverse image of the set
X of all relations ~ such that py ~ p for the initial vertex pp and some terminal
vertex p.

To show (4) implies (3) suppose that o : £¥* — M is a homomorphism to a
finite monoid M, and L = o~ !(X) for some X C M. We may assume o is onto. In
other words o is a choice of generators for M. Let I' be the corresponding Cayley
diagram of M, and make I" into an automaton with initial vertex 1 and terminal
vertices consisting of all elements of X. As a path from 1 with label w ends at
o(w), we see that T" accepts L.

Finally (3) implies (1) by induction on the number of edges of the accepting
automaton A. If there are no edges, the accepted language is either € or ¢ depending
on whether or not the initial vertex is terminal. Otherwise pick an edge e from
vertex p to ¢ with label a € ¥, and consider four automata Ay, . ..,.A3 constructed
by removing e from .A. Ap has the same initial and terminal vertices as A. A; has
the same initial vertex as A and p as a terminal vertex. Ay has initial vertex ¢ and
terminal vertex p. Az has initial vertex ¢ and the same terminal vertices as A. By
induction these automata accept regular languages Ry, ..., R3.

Every successful path in A not containing e is a path in 4g. Successful paths
~ in A which do contain e factor into products v = y,evze-- -7y, where v; is a
successful path in A;, v, is a successful path in A3, and for 1 < i < n, v is a
successful path in A3. Conversely all paths of these types are successful paths in A.
It follows that the language accepted by A can be described as Ry + R;a(Rza)* R3.
Since each of the R;’s is regular, Ry + Rja(R2a)* R is regular too. O

COROLLARY 3.10 (Pumping Lemma). For each regular language L there is an
integer n with the following property. FEvery w € L of length at least n can be
written as a product xyz with y # € in such a way that xy*z C L. Further if u is
any subword of w of length n, we may take y to be a subword of u.

PROOF. Let L be accepted by an automaton over ¥ with n vertices. If w is
the label of a successful path, then u must have a nontrivial subword which labels
a cycle in that path. O

We already know that regular languages are closed under the rational opera-
tions. The next corollary gives some more closure properties. Closure under ho-
momorphism means that the image of a regular language under a homomorphism
from one finitely generated free monoid to another is regular in the target monoid,
and likewise for closure under inverse homomorphism.

COROLLARY 3.11. Regular languages are closed under intersection, comple-
ment, homomorphism, and inverse homomorphism.

6 ROBERT H. GILMAN

PROOF. The first two assertions together with the last one follow easily from
Theorem 3.9(4). The remaining assertion may be proved in a straightforward way
by induction on regular languages. Alternatively if f : £¥* — A* is a homomorphism
and L is the language accepted by an automaton A over X, replace edge labels of
A by their images under f. Subdivide edges as necessary to get an automaton over
A accepting f(L). a

EXERCISE 3.12. The language {a™b™} is not regular.

EXERCISE 3.13. Use the Pumping Lemma to show that word problems of infi-
nite groups are not regular languages. Conclude that the word problem of a group
is regular if and only if the group is finite.

Hint: Consider words ww ™! where w is the label of a geodsic path in the Cayley
diagram.

EXERCISE 3.14. The language of all words in (a +b+a~! +b71)* freely equal
to € is not regular.

DEFINITION 3.15. For any language L C X* the syntactic congruence of L is
defined by w ~ v if zwy € L if and only if zvy € L for all z,y € £*. The quotient
¥*/ ~ is the syntactic monoid of L.

EXERCISE 3.16. The syntactic congruence is a congruence.
EXERCISE 3.17. The syntactic monoid of L is finite if and only if L is regular.

EXERCISE 3.18. The syntactic monoid of a language L over an alphabet with
formal inverses is a group if and only if L is closed under free equivalence.

3.2. Regular languages and groups. We continue with connections be-
tween regular languages and groups.

DEFINITION 3.19. A group G has a rational structure if some choice of genera-
tors £* — G admits a regular combing with uniqueness. In other words a rational
structure for G is a choice of generators together with a regular language which
maps bijectively to G.

All automatic groups have rational structures.

EXERCISE 3.20. If G has a rational structure with respect to one choice of
generators, then it does for all choices.

Hint: Let o : ¥* — G and 7 : A* — G be two choices of generators, and
consider a homomorphism f : ¥* — A* with 70 f = 0.

EXERCISE 3.21. If N is normal in G, and both N and G/N have rational
structures, then G has one too.

EXERCISE 3.22. The wreath product Z ! Z has a rational structure.
EXERCISE 3.23. An infinite torsion group does not have a rational structure.

Suppose £* — G is a choice of generators and H is a finitely generated subgroup
of G. We can pick words wy, ..., w, in ¥* whose images generate H. It follows that
H is the image of a regular language; the next theorem shows that the converse is
true.

THEOREM 3.24. Let o : £¥* — G be a choice of generators. A subgroup H C G
is finitely generated if and only if it is the image of a regular language over X.

FORMAL LANGUAGES AND COMBINATORIAL GROUP THEORY g

ProoFr. It suffices to show that if H = o(R) for some regular language R C ¥*,
then H is finitely generated. Clearly we may assume R is nonempty. Hence R is
accepted by an automaton A satisfying the conditions of Lemma 3.8.

Pick a spanning subtree Ag of A with root pg, the initial vertex of A4, and with
all edges directed away from the root. The label of any successful path in A is a
product w = woUW1VaW2 * * * Wyp—1Vm Wy, in which each w; is the label of a path
(possibly of length 0) in Ag, and each v; is the label of an edge e; not in Ap.

Let x; and y; be the labels of the paths in Ay from the root to the source and
target vertex of e; respectively, and let z be the label of the path in 4y from pg
to the single terminal vertex p;. Since there is at most one path in 4y between
any two vertices, 1 = wy. Likewise z;1; = y;w; for 1 < ¢ < m, and z = y, wpn,.
Thus w and z1v1y; 111?2’()2:1/2_ L. “ T UmYm 2z have the same image in G. It follows
that o(R) lies in the subgroup of G generated by o(z) together with one generator
o(zvy~!) for each edge e not in Ag. Here v is the label of e, and z and y are the
labels of the paths in A to the source and target of e respectively.

To complete the proof it suffices to show that o(z) and each o(zvy~!) men-
tioned above lie in H. As z is the label of a successful path, z € R whence o(z) € H.
Consider o(zvy~!). Let u be the label of a path in A from the target vertex of e
to p;. It follows from zvu,yu € R that o(zvy~!) = o(zvu)o(yu)~! € H. O

EXERCISE 3.25. If ¥* — G is a choice of generators and R is regular over %,
then the subgroup generated by R (the image of R in G) is finitely generated.

THEOREM 3.26. Let R C ¥* be a language and L the language obtained by
freely reducing all words in R. If R is regular, so is L.

PROOF. Let A be an automaton accepting R. If for any a € ¥ there is a path
with label aa=! (some edges of this path may have label €) from vertex p to g,
add a new edge with label € from p to ¢ if such an edge does not already exist.
Continue until no more additions are possible. Observe that if waa™!v is the label
of a successful path, then so is wv. Consequently the modified automaton accepts
the language R’ consisting of R and all words which may be derived from R by free
reduction. As L is the intersection of R’ with the regular language of freely reduced
words (see Problem 3.2), it is regular. O

THEOREM 3.27. The intersection of two finitely generated subgroups of a free
group is finitely generated.

PrROOF. Let G be a finitely generated free group and ¥ — G a choice of free
generators. By Theorem 3.26 we may assume that for ¢ = 1, 2 the finitely generated
subgroup H; is the image of the rational language L; over ¥ and L; contains all
the freely reduced words which represent elements of H;. Hence L; N Ly contains
all freely reduced words projecting to H; N Hy. Consequently L; N Ly projects onto
H, N Hy, and H; N Hy is finitely generated by Theorem 3.24. O

3.3. Notes. Regular languages play an important role in the theory of au-
tomatic groups [15] and make an appearance in the theory of word hyperbolic
groups [28].

Problem 3.20 and the problems following it are from [22].

When the technique used in the proof of Theorem 3.24 is applied to finitely
generated subgroups of free groups, it yields a set of free generators and hence a

8 ROBERT H. GILMAN

proof that finitely generated subgroups of free groups are free. For this and other
applications of automata to free groups we refer the reader to [35], [46], and [47].

We have not touched on the well developed connections between regular lan-
guages and finite semigroups. See for example [12, 17, 20, 36].

4. Rational sets

As we observed previously, the definition of regular language in Section 3 makes
sense for arbitrary monoids, not just finitely generated free ones. Since only subsets
of finitely generated free monoids are languages, we use the term rational subset in
this more general situation.

DEFINITION 4.1. The rational subsets of a monoid are the closure of its finite
subsets under the rational operations.

Many properties of regular languages persist for rational subsets, and the proofs
are often the same. Just as in the case of regular languages rational subsets are
closed under rational operations. Likewise for any set of generators of a monoid
M, the rational subsets of M consist of ¢, {1} (where 1 is the unit element of M)
and the closure of the singleton subsets of the set of generators under the rational
operations union, product, and generation of submonoid.

The next lemma is proved by induction on rational sets.

LEMMA 4.2. If R is a rational subset of M, then R lies in a finitely generated
submonoid of M.

PROOF. Each finite subset of M lies in a finitely generated submonoid; and if
the subsets R and S are contained in finitely generated submonoids, so are R + S,
RS, and R*. O

EXERCISE 4.3. If f : M; — M, is a homomorphism of monoids and R is a
rational subset of M, then f(R) is a rational subset of My.
Hint: Use induction on rational sets.

EXERCISE 4.4. If f : M; — M> and S is a rational subset of M5 lying in f(M),
then S = f(R) for some rational subset of Mj.

EXERCISE 4.5. Rational sets are not closed under inverse homomorphism.
Hint: Consider the word problem of an infinite group.

EXERCISE 4.6. Formulate a pumping lemma for rational sets.
EXERCISE 4.7. The intersection of the rational subsets
(a,¢)*(b,1)* and (a,1)*(b,c)"

of the monoid M = ¥* x X* is not rational.
Hint: Use the result of Exercise 4.6.

Observe that the monoid M in Exercise 4.7 is a submonoid of the direct product
of two free groups. Thus rational subsets of groups are not closed under intersection.
Since they are closed under union, they cannot be closed under complement either.
On the other hand rational subsets of finitely generated free groups are closed under
Boolean operations.

FORMAL LANGUAGES AND COMBINATORIAL GROUP THEORY 9

EXERCISE 4.8. Rational subsets of free groups are closed under intersection
and complement.

Hint: Use Theorem 3.26 to show that every rational subset lifts to a regular
language of freely reduced words.

4.1. Finite automata over monoids. Finite automata over a monoid M
are defined in just the same way as finite automata over an alphabet ¥ except
that since M need not have a preferred generating set, we allow the edge labels of
automata to be arbitrary elements of M. When all the edge labels lie in a subset
X C M, we say that the automaton is defined over X.

Automata over £* in this sense are more general than the automata over ¥
and Y. defined in Section 3, but by Theorem 4.9 they accept the same languages.

THEOREM 4.9. Let R be a subset of a monoid M. The following are equivalent.

(1) R is a rational subset of M.
(2) For any generating set X C M, R is accepted by a finite automaton over
X.

PROOF. The proof rests on the following observation. Let f : M; — M; be
a homomorphism of monoids, and suppose the automaton .A; over M; accepts
R C M. If A, is constructed by replacing the edge labels of A; with their images
in M,, then A, accepts f(R).

Suppose R is a rational subset of M. By Theorem 4.2 R is in the submonoid
generated by a finite subset Xo C X. Choose an alphabet ¥ in one to one cor-
respondence with Xg, and let f : £¥* — M be the induced homomorphism. By
Exercise 4.4 R = f(L) for some regular language L C ¥*. Theorem 3.9 guarantees
that L is accepted by an automaton with edge labels from ¥. Replacing these edge
labels by their images yields an automaton over X accepting R.

For the converse suppose R is accepted by an automaton A over X. Let X be
the finite set of elements of X occurring as edge labels in .A. Choose an alphabet
Y in one to one correspondence with X, and let f : ¥* — M be the induced
homomorphism. Define A to be A with its edge labels replaced by corresponding
elements of ¥. A accepts a rational language L such that f(L) = R. Thus R is
rational by Exercise 4.3. O

4.2. Rational Relations. We will use rational relations in the definitions of
context free and indexed languages. A rational relation is a rational subset of the
direct product of two monoids. We write p : M; — M, as well as p C M; x Ms.
The image of S C M; under p is p(S) = {m € M, | 3s € S, (s,m) € p}. Singleton
sets are identified with elements; that is, if S = {m}, we write p(m) instead of
p({m}); and likewise p(S) = m’ if p(S) = {m'}. The domain of p is set of elements
m € M such that p(m) is nonempty, and the image is p(M).

For example if M is a finitely generated monoid, then a monoid homomorphism
f: M — M’ (or more precisely its graph) is a rational relation. Indeed if X ¢ M
is a finite set of generators, then f = (3° y(z, f(x)))* is a rational relation. The
comparator automata involved in the definition of asynchronous automatic groups
are finite automata accepting certain rational relations. The comparator automata
for synchronous automatic groups accept regular languages which encode rational
relations.

THEOREM 4.10. If p: M — ¥* and p' : ©* — M’ are rational relations, so is
the composition p’ o p.

10 ROBERT H. GILMAN

PRrROOF. By Theorem 4.9 p is accepted by an automaton A with edge labels
from M x X, and p’ is accepted by A’ with edge labels from X, x M’. Add edges
as necessary so that each vertex of A has a loop, i.e., an edge from the vertex to
itself, with label (1,€) and each vertex of A’ has a loop with label (e,1). Clearly
the sets accepted by the automata are unchanged.

The point of these alterations is the following. Suppose (m,v) is the label of
a path v from p to ¢ in A. Then the sequence of edge labels in the path will
be (mq,a1),...,(mk,ax) for some m; € M and a; € L. with m;---my = m and
ay ---ar = v. The loops we have added allow us to interpolate €’s in the sequence
a1 ---ar = v without changing p, ¢ or the path label (m,v). A similar condition
holds for A’. Thus if there is a path v from p to g in A with label (m,v) and a
path + from p’ to ¢’ in A’ with label (v, m’), we may take the edge labels of these
paths to be (my,a1),..., (mk,ax) and (a1, m}),..., (ax, m},), so that v is expressed
as a product of elements of ¥, in exactly the same way along both paths.

We claim that the automaton B over M x M’ defined as follows accepts po p'.

(1) The vertices of B are pairs (p,p’) where p is a vertex of A and p’ is a
vertex of A'.

m’

(2) There is an edge (p,p’) i (¢,¢') if and only if for some a € X, there
() ’ (avml) ’
are edges p p and ¢ —' ¢'.
(3) The initial vertex is (po,py) where po and pf are initial vertices.
(4) (p,p’) is a terminal vertex if p and p’ are.

m,a
—

It is straightforward to show by induction on path length that there is a path
in B from (p,p’) to (g, q’") with label (m,m’) if and only if the following conditions
hold.

(1) For some word v € £* there is a path in A from p to ¢ with label (m,v)
and a path in A’ from p’ to ¢’ with label (v, m’).

(2) Along both paths v is expressed as a product of elements of ¥, in exactly
the same way.

It follows from these conditions that if B accepts (u,v), then (u,v) € pop'.
Similarly the converse follows from the conditions together with the remarks above
about the addition of extra edges. O

COROLLARY 4.11. The image of a regular language L C X* under a rational
relation p : ¥* — M is a rational subset of M.

PROOF. Define py, : ¥* — ¥* to be the restriction of the identity map to L. If
A is an automaton over ¥* accepting L, then replacing each edge label a by (a, a)
yields an automaton accepting pr,. Thus py, is a rational relation. As the projection
of pr, o p from ¥* x M to M is p(L), it follows from Lemma 4.4 and Theorem 4.10
that p(L) is rational. O

Rational binary relations between finitely generated free monoids have a special
name; they are called rational transductions. An automaton accepting a rational
transduction is a transducer.

EXERCISE 4.12. Homomorphisms and inverse homomorphisms are rational
transductions. (An inverse homomorphism p : £* — A* is defined by p(x) = g~ (z)
for some homomorphism g : A* — ¥*.)

