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PREFACE

The International Conference of Applied Analysis and Differential
Equations was held September 4-9, 2006 at the “Al. I. Cuza” University
of Tagi and the “Octav Mayer” Mathematical Institute of the Romanian
Academy of Iagi, Romania.

It was supported by the Project CERES 4-194/2004.

The conference was devoted to recent advances in Nonsmooth Analysis
and Optimizations, ODE, PDE, Control Theory, Stochastic Analysis and
was well attended by mathematicians all over the world. There were 40
minutes plenary invited lectures, 20 minutes talks and a poster session.

This volume includes 29 selected articles, many of them written by lea-
ding specialists in their fields and covering the main topics of the conference.

We take this opportunity to express our gratitude to all who have cho-
sen to publish their contributions in this volume as well as to the referees
of the submitted papers for their promptitude and high exigence. Further-
more, we thank Ms. Carmen Savin for her excellent secretarial work, as well
as Ms. Elena Mocanu for her extremely efficient and skilful assistance in
preparation of the camera-ready copy.

Finally, we express our warmest thanks to World Scientific for the very
pleasant and fruitful cooperation during the publication of this volume.

Tasi, December 19, 2006 Ovidiu Carja and Ioan I. Vrabie
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A STABILITY CRITERION FOR DELAY DIFFERENTIAL
EQUATIONS WITH IMPULSE EFFECTS

J.0. ALZABUT

Department of Mathematics and Computer Science
Cankaya University, 06530 Ankara, Turkey
E-mail: jehad@cankaya.edu.tr

In this paper, we prove that if a delay differential equation with impulse effects
of the form

#'(t) = A)z(t) + B(t)z(t —7) , t #6;,

Az(0;) = Ciz(0;) + Diz(6;—;), i€N,
verifies a Perron condition then its trivial solution is uniformly asymptotically
stable.

Keywords: Impulse; Delay; Adjoint; Perron; Uniform asymptotic stability.

1. Introduction and preliminaries

Delay differential equations with impulse effects can suitably model various
evolutionary processes that exhibit both delay and impulse characteristics.
In particular, they provide a natural description of the motion of several
real world processes which, on one hand, depends on the processes history
that often turns out to be the cause of phenomena substantially affec-
ting the motion and, on other hand, is subject to short time perturbations
whose duration is almost negligible. Such processes are often investigated in
various fields of science and technology, such as physics, population dyna-
mics, ecology, biological systems, optimal control, etc., see Refs. 1-11 and
reference quoted therein.

It is well known in the theory of ordinary differential equations (see
eg. Ref. 12 [p. 120]) that if for every continuous function f(t) bounded on
[0, 00), the solution of the equation

z'(t) = A(t)x(t) + f(2),

satisfying x(0) = 0 is bounded on [0, 00), then the trivial solution of the
corresponding homogeneous equation
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z'(t) = A(t)z(t)

is uniformly asymptotically stable. This result is referred as Perron theo-
rem Ref. 13. Later, Perron theorem has been extended to delay differential
equations Ref. 12 [p. 371]. Indeed, it was shown that if for every continuous
function f(¢) bounded on [0, 00), the solution of the equation

z'(t) = A(t)z(t) + B(t)x(t — ) + f(t), t > 0

satisfying x(t) = 0 for ¢t € [~7,0] is bounded on [0,00), then the trivial
solution of the equation

z'(t) = A(t)z(t) + B(t)z(t — 1),

is uniformly asymptotically stable. For more related materials, see the pa-
pers Refs. 14,15.

In this paper, we carry out the above result to a type of linear delay
differential equations with impulse effects. Indeed, we consider equation of
the form

x'(t) = A(t)z(t) + B(t)z(t — 1), t #0,,

Az(6;) == 2(0) — 2(6;) = Ciz(6;) + Diz(6_;), i €N, L)

and show that its trivial solution is uniformly asymptotically stable under
a Perron condition. Our equation differs from the previous ones, see also
Refs. 16-19, not only it is more general but also it allows delay terms in
the impulse conditions. Such impulse conditions are more natural for delay
differential equations.

With regard to equation (4) it is assumed that

() A and B are n xn continuous bounded matrices, 7 > 0 is a positive
real number;

(i) C; and D; are n x n bounded matrices, 7 € N is fixed;

(iii) {6} is an increasing sequence of real numbers with lim 6; = oo.
1—00

We also assume that det(Z + C;) # 0 and that there exist a positive real

numbers p and v such that || Ds|| < p and ||(I+C;)~!|| < p and 0;i—0;_; <v
for all i € N. || - || denotes any matrix norm.

Definition 1.1. Equation (4) is said to verify Perron condition if for every
continuous bounded on [0, 00) function f(¢) and every bounded sequence
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3; the solution of
z'(t) = A(t)z(t) + B(t)x(t — 1) + f(t), t# 0,
Az(8;) = Ciz(6;) + Dix(0:—;) + Bi, 1 €N,
satisfying z(t) = 0 for ¢t € [—7,0] is bounded on t € [0, c0).

(2)

By a solution of (6) on an interval J, we mean a function z defined on

J such that x is continuous on J except possibly at 6; € J for i € N, where

z(67) : 1im+ z(t) and z(0; ) := lim z(t) exist, z(6; ) := z(6;), and that =
t—0; .

—0.
i

satisfies (6)Ion J. Clearly, if f =0 and 3; = 0 for all ¢ € N then (6) reduces
to (4).

Let PLC([—7,0],R™) denote the set of piecewise left continuous func-
tions ¢ : [—7,0] — R™ having a finite number of discontinuity points of the
first kind. Under the above conditions, one can easily show that for given
o >0 and ¢ € PLC([-7,0],R™) there is a unique solution z(t) of (6) such
that

z(t+o0)=¢(t), te[-,0]. (3)

2. Preparatory lemmas

The following lemmas, see Ref. 12 for delay differential equations without
impulse effects, are essential in proving the main result of this paper. Lemma
4.1 is needed to define an adjoint equation of (4), Lemma 2.2 provides rep-
resentation of solutions, and Lemma 2.3 is concerned with the boundedness
of fundamental matrices of (4).

Consider the equation

y'(t) = —AT(t)y(t) — BT (t + T)y(t +7), t # 6s,

Ay(6;) — (I +CH)7Cly(6:) — (1 + CT) ' DI u(6F;), i € N.

We claim that equation (9) is an adjoint of (4) with respect to a function
resembles the one used by Halanay in Ref. 12 [p. 371]. It turns out that this
function has the form

t+7
< y(t),z(t) >=yT(t)z(t) + /z yT(s)B(s)z(s — 7)ds

+ > YT Drx(0k-;),  (5)
n(t)<k<n(t)+j

where

n(t) = min{: € N: 6; > t}.
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Lemma 2.1. If z(t) is a solution of (4) and y(t) is a solution of (9) then

(y(t),z(t)) = ¢ = constant,
where ( , ) is defined by (10).

Proof. Let t € (6;,0;4+1). Then
5 (0,2(0) =~ OAWR() - ¥ ¢+ T)B + 7)a(t)
+y7(t+7)B(t + 7)z(t) — yT (t)B(t)2(t — 7)

+yT () AM)(t) +y" (t)B(t)a(t — ) = 0,

and hence (y(t), z(t)) = ¢; = constant for t € (;,6;41). We may claim that

¢; = c for i € N. Indeed, since
Ci+1 — ¢ = A(y(t), z(t)) |i=e,,
by (10) we have
cit1 — e =y (07)2(6}) — y7 (6:)2(6;)
+ > y" (6}) Dy (6x—;)

n(8])<k<n(6;)+j
- > YOO Dea(0ky).
n(0i)§k<n(0i)+j
Since n(}) =i+ 1 and n(6;) = i, we have

civ1 — ¢ =y (67)z(6}) — v (6:)z(6;) — y"(0;)Diz(6;—;)

+y7(0},) Diy;(6;).

Using the impulse conditions in (4)
z(0;7) = (I + Ci)z(6;) + D;z(0;_;)
and the impulse conditions in (9)
y (04)Dirs = yT(8:) -y (6;) — yT(67)C;

we deduce that c;11 —¢; =0 for all i € N and thus (y(t), z(t)) = c.

O

Remark 2.1. It is easy to verify also that the adjoint of (9) is (4), i.e they

are mutually adjoint of each other.
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Definition 2.1. A matrix solution X (¢,a) of (4) satisfying X (a,a) = I
and X(t,a) =0 for t < a is called a fundamental matrix of (4).

Definition 2.2. A matrix solution Y (t,a) of (9) satisfying Y (a,a) = I
and Y (t,a) = 0 for t > a is said to be a fundamental matrix of (9).

Lemma 2.2. Let X(t,a) be a fundamental matriz of (4) and o > 0 a real
number. If z(t) is a solution of (6), then

z(t) = X(t,0)z(0)
+ /(I X(t,a+ 7)B(a+ 7)z(a)da + /t X(t,a)f(a)da

. > X(t, 08 ) Dersz(Ok)+ > X(t,60)5k. (6)

n(o)—j<k<n(o) n(o)<k<n(t)

Proof. Multiplying the differential equation in (6) by the matrix Y7 (a, t)
and integrating with respect to a from o to ¢, we obtain

z(t) = YT (0,t)z(0) — /t YT (a + 7,t)B(a+ 7)z(a)da

t t
+/ YT(a,t)B(a)z(a —'r)da+/ YT (a,t)f(a)da
+ 3 [YT(e;:, Hz(0F) — YT (0, t)x(&k)].
n(a)<k<n(t)
Replacing a by a+7 in the second integral and using the impulse conditions
in (6) and (9), we have

z(t) = YT (0,t)z(0) + / YT (a+ 7,t)B(a + 7)z(a)da

o—T

+ > YT (68, ;,t) Dit2(0k)

n(o)—j<k<n(o)

t
+ / YT (a,t)f(a)da + Z YT (6, t)8xk. (7)

. n(o)<k<n(t)
Since X (t,0) = YT (o,t), which can be seen by replacing z(t) by the fun-
damental matrix X(¢,0) in (7) with f =0 and 8; =0 for all i € N, (7) is
the same as (6). m]
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Corollary 2.1. Let X(t,a) be a fundamental matriz of (4) and Y (t,c) be
a fundamental matriz of (9). Then

X(t,a)=YT(a,t).
Lemma 2.3. If (4) verifies Perron condition, then
| X(t,a)|| < M fort>a >0.
Proof. We first claim that there exists a constant d such that
/t IX(ta)lda+ > [X(t65)] <d fort>o0. (8)
0 0<m<n(t)

Define the space Il = CB x S, where CB is the set of bounded func-
tions f € C([0,00),R™) and S is the set of bounded sequences 8 = {f,},
Bm € R™, m € N. The elements are represented by the pair (f, B) supplied
by the norm ||(f, 8)|| = sup ||f(t)||+ sup ||Bm||. Consider the operator U

te[0,00) meN

defined on the Banach space II by
t
U(f,Bm) = / X(t,e)f(@da+ Y X(t,67)6m.
0 0<m<n(t)

We may use the Banach Steinhaus theorem Ref. 20 by employing similar
arguments developed in Ref. 12 to arrive at (8).

Now let us consider (9) satisfied by Y (a, t). Integrating both sides from
o to t leads to

YTl(o,t) =T+ /t YT (o, t)A(0)da + /t YT (a+7,t)B(a + 7)do

- Y AYT(4,1).

n(o)<i<n(t)
Observing that YT (6;,t) = YT (6}, t)(I + C;) + YT(Haj,t)Di, we obtain

. IAYT@L <20 Y IYT(6F, 1))

n(o)<i<n(t) 0<i<n(t)

It follows that
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t
nwwwhu+w/mﬂmMM+n S IYTEro),
0

0<i<n(t)

where

v=mw{wmmmmmmwum}
>0 £>0

Replacing Y7 (,t) by X(t,0) and using inequality (8) result in the desired
conclusion. m|

3. The main result

Theorem 3.1. If equation (4) verifies Perron condition then its trivial
solution is uniformly asymptotically stable.

Proof. Let z(t; 0, ¢) denote the solution of (4) satisfying (3). From Lemma
2.2,

0
z(t;o,¢) = X(t,0)0(0) + X(t,a+o0+7)Bla+ o+ 7)p(a)da

+ Z X (8,6 (o)) Dran(o)+i 6 (Ok)-
—j<k<0

By Lemma 2.3, there exists M > 0 such that || X (¢,7)| < M. Hence

lz(t;0, @)l < M(1+ 7y + jp)lIdllo = Mi4llo,
where
My =M1 +7vy+jp)
and

[¢llo="sup [l¢(r)].
0]

re(—r,

Thus, the zero solution of (4) is uniformly stable.
To complete the proof we need to show that

tlim z(t;0,¢) =0 uniformly with respect to o and ¢. (9)
—00
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For our purpose, let u > o. It is clear that z(t) = x(t; o, @) satisfies

x(t;0,0) = X(t, Wz (u;0,¢) + /i X(t,a+ 7)B(a + 7)z(0; 0, ¢)dox

+ Y X(t,6},,)Diysz(0k 0, 0).

n(u)—j<k<n(u)

Integrating both sides from o to ¢ and then changing the order of integra-
tions and the order of summation and the integral, we have

o a+T
(t—o)x(t;o,¢) = / / X(t,a+7)B(a+ 7)z(o; 0, )duda
t—r a+T
+ /U /a X(t,a+T7)B(a+ 7)z(0; 0, $)dpuda
t
4 / X(t, )z (u; 0, ¢)dp

Okt j
Y [0 ) Desa(io 00

n(o)—j<k<n(o)

Ok +;
+ 3 [T X0, D00, 0)an

n(o)<k<n(t)—j

We easily see from above that

(t —o)lz(t; 0, )| < yr°MMi|\6llo + jovMM,|¢]o

t
+ My max{rv, Vp,1}||¢||o[/0 I1X (¢, 5)|ds

+ 3 IX@enl). (10)
0<r<n(t)
In view of (8), the right side of (10) is bounded. Hence
M,
: <
la(ti o, )l < 22 |, (1)

where Ms is chosen so that
My < MMy (y72 + jpv) + M, max {7z, vp, 1}d.
Obviously, (9) follows from (11). O



